Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Sep;129(3):539–550. doi: 10.1042/bj1290539

Mechanism of biosynthesis of thio-β-d-glucuronides and thio-β-d-glucosides

G J Dutton 1, H P A Illing 1
PMCID: PMC1174157  PMID: 4658987

Abstract

1. The thio-β-d-glucosiduronic acids (thio-β-glucuronides) of o-aminothiophenol, diethyldithiocarbamic acid, p-nitrothiophenol and thiophenol are formed biosynthetically in broken- and intact-cell preparations of mouse liver. 2. For this biosynthesis to occur in homogenates or microsomal fractions, UDP-glucuronic acid was required during incubation; glucose, glucuronic acid or UDP could not replace it. UDP was a product of the reaction. 3. The biosynthetic mechanism linking glucuronic acid to thiol and carbodithioic groups therefore requires UDP-glucuronyltransferase activity and resembles that forming the various types of O-glucuronides. 4. An analogous enzymic mechanism employing UDP-glucose synthesizes the thio-β-d-glucosides of diethyldithiocarbamic acid and thiophenol in gut preparations of the mollusc Arion ater; this mechanism resembles that forming the O-glucosides. The thio-β-d-glucosides are formed also in intact cells. 5. As expected from the distribution of O-glycosides, S-glucuronides of these aglycones were not detectable with the invertebrate, nor were the S-glucosides with the vertebrate. 6. Despite their similar biosyntheses, S- and O-β-glycosides differ in susceptibility to hydrolysis by β-glycosidases. Rat preputial-gland β-glucuronidase hydrolysed thioglucuronides of o-aminothiophenol, diethyldithiocarbamic acid and p-nitrothiophenol, hydrolysis being inhibited by glucarolactone; the thioglucuronide of thiophenol was not hydrolysed by preputial-gland or liver β-glucuronidase. The two S-glucosides resisted hydrolysis by β-glucosidase from almond emulsin.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CLAPP J. W. A new metabolic pathway for a sulfonamide group. J Biol Chem. 1956 Nov;223(1):207–214. [PubMed] [Google Scholar]
  2. COLUCCI D. F., BUYSKE D. A. THE BIOTRANSFORMATION OF A SULFONAMIDE TO A MERCAPTAN AND TO MERCAPTURIC ACID AND GLUCURONIDE CONJUGATES. Biochem Pharmacol. 1965 Apr;14:457–466. doi: 10.1016/0006-2952(65)90218-2. [DOI] [PubMed] [Google Scholar]
  3. CONCHIE J., LEVVY G. A. Inhibition of glycosidases by aldonolactones of corresponding configuration. Biochem J. 1957 Feb;65(2):389–395. doi: 10.1042/bj0650389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dutton G. J. Uridine diphosphate glucose and the synthesis of phenolic glucosides by mollusks. Arch Biochem Biophys. 1966 Sep 26;116(1):399–405. doi: 10.1016/0003-9861(66)90046-4. [DOI] [PubMed] [Google Scholar]
  5. GOODMAN I., FOUTS J. R., BRESNICK E., MENEGAS R., HITCHINGS G. H. A mammalian thioglycosidase. Science. 1959 Aug 21;130(3373):450–451. doi: 10.1126/science.130.3373.450. [DOI] [PubMed] [Google Scholar]
  6. Gessner T., Jakubowski M. Diethyldithiocarbamic acid methyl ester. A metabolite of disulfiram. Biochem Pharmacol. 1972 Jan 15;21(2):219–230. doi: 10.1016/0006-2952(72)90272-9. [DOI] [PubMed] [Google Scholar]
  7. HANSEN H. J., GILES W. G., NADLER S. B. Metabolism of 9-ethyl-6-MP-S35 and 9-butyl-6-MP-S35 in humans. Proc Soc Exp Biol Med. 1963 May;113:163–165. doi: 10.3181/00379727-113-28307. [DOI] [PubMed] [Google Scholar]
  8. HUGGETT A. S., NIXON D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957 Aug 24;273(6991):368–370. doi: 10.1016/s0140-6736(57)92595-3. [DOI] [PubMed] [Google Scholar]
  9. Hétu C., Gianetto R. Synthetic 1-thio- -D-glucosiduronic acids as substrates for rat-liver -glucuronidase. Can J Biochem. 1970 Jul;48(7):799–804. doi: 10.1139/o70-124. [DOI] [PubMed] [Google Scholar]
  10. KARUNAIRATNAM M. C., KERR L. M. H., LEVVY G. A. The glucuronide-synthesizing system in the mouse and its relationship to beta-glucuronidase. Biochem J. 1949;45(4):496–499. doi: 10.1042/bj0450496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KASLANDER J. Formation of an S-glucuronide from tetraethylthiuram disulfide (Antabuse) in man. Biochim Biophys Acta. 1963 Jun 4;71:730–731. doi: 10.1016/0006-3002(63)91149-1. [DOI] [PubMed] [Google Scholar]
  12. KASLANDER J., KAARS SIJPESTEIJN A., van der KERK G. On the transformation of dimethyldithiocarbamate into its beta-glucoside by plant tissues. Biochim Biophys Acta. 1961 Sep 16;52:396–397. doi: 10.1016/0006-3002(61)90695-3. [DOI] [PubMed] [Google Scholar]
  13. LEVVY G. A., McALLAN A., MARSH C. A. Purification of beta-glucuronidase from the preputial gland of the female rat. Biochem J. 1958 May;69(1):22–27. doi: 10.1042/bj0690022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LEVVY G. A. The preparation and properties of beta-glucuronidase. IV. Inhibition by sugar acids and their lactones. Biochem J. 1952 Nov;52(3):464–472. doi: 10.1042/bj0520464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
  17. RANDERATH K. A comparison between thin-layer chromatography and paper chromatography of nucleic acid derivatives. Biochem Biophys Res Commun. 1962 Jan 24;6:452–457. doi: 10.1016/0006-291x(62)90374-1. [DOI] [PubMed] [Google Scholar]
  18. STEVENSON I. H., DUTTON G. J. Glucuronide synthesis in kidney and gastrointestinal tract. Biochem J. 1962 Feb;82:330–340. doi: 10.1042/bj0820330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. STOEBER F. Sur la biosynthèse induite de la beta-glucuronidase chez Escherichia coli. C R Hebd Seances Acad Sci. 1957 Feb 11;244(7):950–952. [PubMed] [Google Scholar]
  20. STRUME J. H. METABOLISM OF DISULFIRAM AND DIETHYLDITHIOCARBAMATE IN RATS WITH DEMONSTRATION OF AN IN VIVO ETHANOL-INDUCED INHIBITION OF THE GLUCURONIC ACID CONJUGATION OF THE THIOL. Biochem Pharmacol. 1965 Apr;14:393–410. doi: 10.1016/0006-2952(65)90213-3. [DOI] [PubMed] [Google Scholar]
  21. Stromme J. H., Eldjarn L. Distribution and chemical forms of diethyldithiocarbamate and tetraethylthiuram disulphide (disculfiram) in mice in relation to radioprotection. Biochem Pharmacol. 1966 Mar;15(3):287–297. doi: 10.1016/0006-2952(66)90300-5. [DOI] [PubMed] [Google Scholar]
  22. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  23. TRIVELLONI J. C. Biosynthesis of glucosides and glycogen in the locust. Arch Biochem Biophys. 1960 Jul;89:149–150. doi: 10.1016/0003-9861(60)90027-8. [DOI] [PubMed] [Google Scholar]
  24. YAMAHA T., CARDINI C. E. The biosynthesis of plant glycosides. I. Monoglucosides. Arch Biochem Biophys. 1960 Jan;86:127–132. doi: 10.1016/0003-9861(60)90379-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES