Abstract
A radiometric technique for measuring l-asparagine in small samples of biological origin is presented. After removal of l-glutamate and l-aspartate by enzymic decarboxylation, l-asparagine in the sample is hydrolysed to l-aspartate with l-asparaginase from Escherichia coli. The l-aspartate so generated is then enzymically transaminated with 2-oxo[1-14C]glutarate yielding l-[1-14C]glutamate. After specific chemical removal of unchanged 2-oxo[1-14C]glutarate, the l-[1-14C]glutamate generated is determined by scintillation counting of the radioactivity. This technique can measure the concentration of l-asparagine present in approx. 1μl of mouse blood, and is capable of detecting as little as 25pmol of the amide. Illustrative applications of the method are presented and discussed, including measurement of the l-asparagine content of the mouse hypophysis.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- CHAPPELLE E. W., LUCK J. M. The decarboxylation of amino acids, proteins, and peptides by N-bromosucclnimide. J Biol Chem. 1957 Nov;229(1):171–179. [PubMed] [Google Scholar]
- Cooney D. A., Capizzi R. L., Handschumacher R. E. Evaluation of L-asparagine metabolism in animals and man. Cancer Res. 1970 Apr;30(4):929–935. [PubMed] [Google Scholar]
- Cooney D. A., Milman H. A., Truitt R. Disposable and versatile vessels for microdiffusion studies. Anal Biochem. 1971 Jun;41(2):583–589. doi: 10.1016/0003-2697(71)90182-5. [DOI] [PubMed] [Google Scholar]
- GILBERTSON J. R., KARNOVSKY M. L. Nonphosphatide fatty acyl esters of alkenyl and alkyl ethers of glycerol. J Biol Chem. 1963 Mar;238:893–897. [PubMed] [Google Scholar]
- KREBS H. A. Manometric determination of L-aspartic acid and L-asparagine. Biochem J. 1950 Nov-Dec;47(5):605–614. doi: 10.1042/bj0470605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kojima Y., Wacker W. E. An enzymatic method for the measurement of asparagine and a new assay of asparaginase activity. J Lab Clin Med. 1969 Sep;74(3):521–526. [PubMed] [Google Scholar]
- Lauinger C., Ressler C. Beta-cyanoalanine as a substrate for asparaginase. Stoichiometry, kinetics, and inhibition. Biochim Biophys Acta. 1970 Feb 11;198(2):316–323. doi: 10.1016/0005-2744(70)90064-1. [DOI] [PubMed] [Google Scholar]
- Oreskes I., Cantor F., Kupfer S. Separation of glutamine and asparagine by ion exchange chromatography with temperature programming. Anal Chem. 1965 Dec;37(13):1720–1723. doi: 10.1021/ac60232a023. [DOI] [PubMed] [Google Scholar]
- RILEY V. Adaptation of orbital bleeding technic to rapid serial blood studies. Proc Soc Exp Biol Med. 1960 Aug-Sep;104:751–754. doi: 10.3181/00379727-104-25975. [DOI] [PubMed] [Google Scholar]
- Ressler C., Giza Y. H., Nigam S. N. Beta-cyanoalanine, product of cyanide fixation and intermediate in asparagine biosynthesis in certain species of Lathyrus and Vicia. J Am Chem Soc. 1969 May 7;91(10):2766–2775. doi: 10.1021/ja01038a059. [DOI] [PubMed] [Google Scholar]
- SHUKUYA R., SCHWERT G. W. Glutamic acid decarboxylase. I. Isolation procedures and properties of the enzyme. J Biol Chem. 1960 Jun;235:1649–1652. [PubMed] [Google Scholar]
- Tate S. S., Meister A. Studies on the sulfhydryl groups of L-aspartate beta-decarboxylase. Biochemistry. 1968 Sep;7(9):3240–3247. doi: 10.1021/bi00849a029. [DOI] [PubMed] [Google Scholar]