Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Oct;129(5):1063–1070. doi: 10.1042/bj1291063

Mössbauer effect in rubredoxin. Determination of the hyperfine field of the iron in a simple iron–sulphur protein

K K Rao 1,2, M C W Evans 1,2, R Cammack 1,2, D O Hall 1,2, C L Thompson 1,2, P J Jackson 1,2, C E Johnson 1,2
PMCID: PMC1174263  PMID: 4348167

Abstract

1. Rubredoxin isolated from the green photosynthetic bacterium Chloropseudomonas ethylica was similar in composition to those from anaerobic fermentative bacteria. Amino acid analysis indicated a minimum molecular weight of 6352 with one iron atom per molecule. 2. The circular-dichroism and electron-paramagnetic-resonance spectra of Ch. ethylica rubredoxin showed many similarities to those of Clostridium pasteurianum, but suggested that there may be subtle differences in the protein conformation about the iron atom. 3. Mössbauer-effect measurements on rubredoxin from Cl. pasteurianum and Ch. ethylica showed that in the oxidized state the iron (high-spin Fe3+) has a hyperfine field of 370±3kG, whereas in the reduced state (high-spin Fe2+) the hyperfine field tensor is anisotropic with a component perpendicular to the symmetry axis of the ion of about −200kG. For the reduced protein the sign of the electric-field gradient is negative, i.e. the ground state of the Fe2+ is a [unk] orbital. There is a large non-cubic ligand-field splitting (Δ/k=900°K), and a small spin-orbit splitting (D~+4.4cm−1) of the Fe2+ levels. 4. The contributions of core polarization to the hyperfine field in the Fe3+ and Fe2+ ions are estimated to be −370 and −300kG respectively. 5. The significance of these results in interpretation of the Mössbauer spectra of other iron–sulphur proteins is discussed.

Full text

PDF
1063

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atherton N. M., Garbett K., Gillard R. D., Mason R., Mayhew S. J., Peel J. L., Stangroom J. E. Spectroscopic investigation of rubredoxin and ferredoxin. Nature. 1966 Nov 5;212(5062):590–593. doi: 10.1038/212590a0. [DOI] [PubMed] [Google Scholar]
  2. Bachmayer H., Piette L. H., Yasunobu K. T., Whiteley H. R. The binding sites of iron in rubredoxin from Micrococcus aerogenes. Proc Natl Acad Sci U S A. 1967 Jan;57(1):122–127. doi: 10.1073/pnas.57.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bachmayer H., Yasunobu K. T., Peel J. L., Mayhew S. Non-heme iron proteins. V. The amino acid sequence of rubredoxin from Peptostreptococcus elsdenii. J Biol Chem. 1968 Mar 10;243(5):1022–1030. [PubMed] [Google Scholar]
  4. Boyer R. F., Lode E. T., Coon M. J. Reduction of alkyl hydroperoxides to alcohols: role of rubredoxin, an electron carrier in the bacterial hydroxylation of hydrocarbons. Biochem Biophys Res Commun. 1971 Aug 20;44(4):925–930. doi: 10.1016/0006-291x(71)90800-x. [DOI] [PubMed] [Google Scholar]
  5. Cammack R., Rao K. K., Hall D. O., Johnson C. E. Mössbauer studies of adrenodoxin. The mechanism of electron transfer in a hydroxylase iron-sulphur protein. Biochem J. 1971 Dec;125(3):849–856. doi: 10.1042/bj1250849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carter C. W., Jr, Freer S. T., Xuong N. H., Alden R. A., Kraut J. Structure of the iron-sulfur cluster in the Chromatius iron protein at 2.25 Angstrom resolution. Cold Spring Harb Symp Quant Biol. 1972;36:381–385. doi: 10.1101/sqb.1972.036.01.049. [DOI] [PubMed] [Google Scholar]
  7. Dunham W. R., Palmer G., Sands R. H., Bearden A. J. On the structure of the iron-sulfur complex in the two-iron ferredoxins. Biochim Biophys Acta. 1971 Dec 7;253(2):373–384. doi: 10.1016/0005-2728(71)90041-7. [DOI] [PubMed] [Google Scholar]
  8. Eaton W. A., Palmer G., Fee J. A., Kimura T., Lovenberg W. Tetrahedral iron in the active center of plant ferredoxins and beef adrenodoxin. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3015–3020. doi: 10.1073/pnas.68.12.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gibson J. F., Hall D. O., Thornley J. H., Whatley F. R. The iron complex in spinach ferredoxin. Proc Natl Acad Sci U S A. 1966 Sep;56(3):987–990. doi: 10.1073/pnas.56.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lode E. T., Coon M. J. Enzymatic omega-oxidation. V. Forms of Pseudomonas oleovorans rubredoxin containing one or two iron atoms: structure and function in omega-hydroxylation. J Biol Chem. 1971 Feb 10;246(3):791–802. [PubMed] [Google Scholar]
  11. Lovenberg W., Sobel B. E. Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. Proc Natl Acad Sci U S A. 1965 Jul;54(1):193–199. doi: 10.1073/pnas.54.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lovenberg W., Williams W. M. Further observations on the chemical nature of rubredoxin from Clostridium pasteurianum. Biochemistry. 1969 Jan;8(1):141–148. doi: 10.1021/bi00829a020. [DOI] [PubMed] [Google Scholar]
  13. Meyer T. E., Sharp J. J., Bartsch R. G. Isolation and properties of rubredoxin from the photosynthetic green sulfur bacteria. Biochim Biophys Acta. 1971 May 11;234(2):266–269. doi: 10.1016/0005-2728(71)90081-8. [DOI] [PubMed] [Google Scholar]
  14. Münck E., Debrunner P. G., Tsibris J. C., Gunsalus I. C. Mössbauer parameters of putidaredoxin and its selenium analog. Biochemistry. 1972 Feb 29;11(5):855–863. doi: 10.1021/bi00755a027. [DOI] [PubMed] [Google Scholar]
  15. Newman D. J., Postgate J. R. Rubredoxin from a nitrogen-fixing variety of Desulfovibrio desulfuricans. Eur J Biochem. 1968 Dec;7(1):45–50. doi: 10.1111/j.1432-1033.1968.tb19571.x. [DOI] [PubMed] [Google Scholar]
  16. Peisach J., Blumberg W. E., Lode E. T., Coon M. J. An analysis of the electron paramagnetic resonance spectrum of pseudomonas oleovorans rubredoxin. A method for determination of the liganids of ferric iron in completely rhombic sites. J Biol Chem. 1971 Oct 10;246(19):5877–5881. [PubMed] [Google Scholar]
  17. Peterson J. A., Basu D., Coon M. J. Enzymatic omega-oxidation. I. Electon carriers in fatty acid and hydrocarbon hydroxylation. J Biol Chem. 1966 Nov 10;241(21):5162–5164. [PubMed] [Google Scholar]
  18. Peterson J. A., Coon M. J. Enzymatic omega-oxidation. 3. Purification and properties of rubredoxin, a component of the omega-hydroxylation system of Pseudomonas oleovorans. J Biol Chem. 1968 Jan 25;243(2):329–334. [PubMed] [Google Scholar]
  19. Phillips W. D., Poe M., Weiher J. F., McDonald C. C., Lovenberg W. Proton magnetic resonance, magnetic susceptibility and Mössbauer studies of Clostridium pasteurianum rubredoxin. Nature. 1970 Aug 8;227(5258):574–577. doi: 10.1038/227574a0. [DOI] [PubMed] [Google Scholar]
  20. Poe M., Phillips W. D., Glickson J. D., McDonald C. C., Pietro A. S. Proton magnetic resonance studies of the ferredoxins from spinach and parsley. Proc Natl Acad Sci U S A. 1971 Jan;68(1):68–71. doi: 10.1073/pnas.68.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RABINOWITZ J. C., PRICER W. E., Jr Formyltetrahydrofolate synthetase. I. Isolation and crystallization of the enzyme. J Biol Chem. 1962 Sep;237:2898–2902. [PubMed] [Google Scholar]
  22. Rao K. K., Cammack R., Hall D. O., Johnson C. E. Mössbauer effect in Scenedesmus and spinach ferredoxins. The mechanism of electron transfer in plant-type iron-sulphur proteins. Biochem J. 1971 Apr;122(3):257–265. doi: 10.1042/bj1220257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sieker L. C., Adman E., Jensen L. H. Structure of the Fe-S complex in a bacterial ferredoxin. Nature. 1972 Jan 7;235(5332):40–42. doi: 10.1038/235040a0. [DOI] [PubMed] [Google Scholar]
  24. Watenpaugh K. D., Sieker L. C., Herriott J. R., Jensen L. H. The structure of a non-heme iron protein: rubredoxin at 1.5 Angstrom resolution. Cold Spring Harb Symp Quant Biol. 1972;36:359–367. doi: 10.1101/sqb.1972.036.01.047. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES