Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Nov;130(1):77–93. doi: 10.1042/bj1300077

The transfer of mannose from guanosine diphosphate mannose to dolichol phosphate and protein by pig liver endoplasmic reticulum

J B Richards 1,*, F W Hemming 1
PMCID: PMC1174303  PMID: 4655455

Abstract

When pig liver microsomal preparations were incubated with GDP-[14C]mannose, 10–40% of the 14C was transferred to mannolipid and 1–3% to mannoprotein. The transfer to mannolipid was readily reversible and GDP was one of the products of the reaction. It was possible to reverse the reaction by adding excess of GDP and to show the incorporation of [14C]GDP into GDP-mannose. When excess of unlabelled GDP-mannose was added to a partially completed incubation there was a rapid transfer back of [14C]mannose from the mannolipid to GDP-mannose. The other product of the reaction, the mannolipid, had the properties of a prenol phosphate mannose. This was illustrated by its lability to dilute acid but stability to dilute alkali, and by its chromatographic properties. Dolichol phosphate stimulated the incorporation of [14C]mannose into both mannolipid and into protein, although the former effect was larger and more consistent than the latter. The incorporation of exogenous [3H]dolichol phosphate into the mannolipid, and its release, accompanied by mannose, on treatment of the mannolipid with dilute acid, confirmed that exogenous dolichol phosphate can act as an acceptor of mannose in this system. It was shown that other exogenous polyprenol phosphates (but not farnesol phosphate or cetyl phosphate) can substitute for dolichol phosphate in this respect but that they are much less efficient than dolichol phosphate in stimulating the transfer of mannose to protein. Since pig liver contained substances with the chromatographic properties of both dolichol phosphate and dolichol phosphate mannose, which caused an increase in transfer of [14C]mannose from GDP-[14C]mannose to mannolipid, it was concluded that endogenous dolichol phosphate acts as an acceptor of mannose in the microsomal preparation. The results indicate that the mannolipid is an intermediate in the transfer of mannose from GDP-mannose to protein. Some 4% of the mannose of a sample of mannolipid added to an incubation was transferred to protein. A scheme is proposed to explain the variations with time in the production of radioactive mannolipid, mannoprotein, mannose 1-phosphate and mannose from GDP-[14C]mannose that takes account of the above observations. ATP, ADP, UTP, GDP, ADP-glucose and UDP-glucose markedly inhibited the transfer of mannose to the mannolipid.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. S., Strominger J. L. Isolation and utilization of phospholipid intermediates in cell wall glycopeptide synthesis. Biochem Biophys Res Commun. 1965 Dec 9;21(5):516–521. doi: 10.1016/0006-291x(65)90414-6. [DOI] [PubMed] [Google Scholar]
  2. BURGOS J., HEMMING F. W., PENNOCK J. F., MORTON R. A. DOLICHOL: A NATURALLY-OCCURRING C100 ISOPRENOID ALCOHOL. Biochem J. 1963 Sep;88:470–482. [PMC free article] [PubMed] [Google Scholar]
  3. Barr R. M., Hemming F. W. Polyprenol phosphate as an acceptor of mannose from guanosine diphosphate mannose in Aspergillus niger. Biochem J. 1972 Mar;126(5):1203–1208. doi: 10.1042/bj1261203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Behrens N. H., Leloir L. F. Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc Natl Acad Sci U S A. 1970 May;66(1):153–159. doi: 10.1073/pnas.66.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Behrens N. H., Parodi A. J., Leloir L. F. Glucose transfer from dolichol monophosphate glucose: the product formed with endogenous microsomal acceptor. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2857–2860. doi: 10.1073/pnas.68.11.2857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Behrens N. H., Parodi A. J., Leloir L. F., Krisman C. R. The role of dolichol monophosphate in sugar transfer. Arch Biochem Biophys. 1971 Apr;143(2):375–383. doi: 10.1016/0003-9861(71)90224-4. [DOI] [PubMed] [Google Scholar]
  7. Bosmann H. B., Case K. R. Mitochondrial autonomy: incorporation of monosaccharides into endogenous glycolipid acceptors in isolated rat liver mitochondria. Biochem Biophys Res Commun. 1969 Aug 22;36(5):830–837. doi: 10.1016/0006-291x(69)90684-6. [DOI] [PubMed] [Google Scholar]
  8. Bosmann H. B. Glycoprotein biosynthesis: purification and properties of glycoprotein. N-acetylglucosaminyl transferases from guinea pig liver utilizing endogenous and exogenous acceptors. Eur J Biochem. 1970 May 1;14(1):33–40. doi: 10.1111/j.1432-1033.1970.tb00257.x. [DOI] [PubMed] [Google Scholar]
  9. Bosmann H. B., Hagopian A., Eylar E. H. Glycoprotein biosynthesis: the characterization of two glycoprotein:frucosyl transferases in HeLa cells. Arch Biochem Biophys. 1968 Nov;128(2):470–481. doi: 10.1016/0003-9861(68)90053-2. [DOI] [PubMed] [Google Scholar]
  10. Bosmann H. B., Martin S. S. Mitochondrial autonomy: incorporation of monosaccharides into glycoprotein by isolated mitochondria. Science. 1969 Apr 11;164(3876):190–192. doi: 10.1126/science.164.3876.190. [DOI] [PubMed] [Google Scholar]
  11. Caccam J. F., Jackson J. J., Eylar E. H. The biosynthesis of mannose-containing glycoproteins: a possible lipid intermediate. Biochem Biophys Res Commun. 1969 May 22;35(4):505–511. doi: 10.1016/0006-291x(69)90375-1. [DOI] [PubMed] [Google Scholar]
  12. De Luca L., Rosso G., Wolf G. The biosynthesis of a mannolipid that contains a polar metabolite of 15-14C-retinol. Biochem Biophys Res Commun. 1970 Nov 9;41(3):615–620. doi: 10.1016/0006-291x(70)90057-4. [DOI] [PubMed] [Google Scholar]
  13. Dunphy P. J., Kerr J. D., Pennock J. F., Whittle K. J., Feeney J. The plurality of long chain isoprenoid alcohols (polyprenols) from natural sources. Biochim Biophys Acta. 1967 Feb 7;136(1):136–147. doi: 10.1016/0304-4165(67)90329-7. [DOI] [PubMed] [Google Scholar]
  14. Feeney J., Hemming F. W. Nuclear magnetic resonance spectrometry of naturally occurring polyprenols. Anal Biochem. 1967 Jul;20(1):1–15. doi: 10.1016/0003-2697(67)90258-8. [DOI] [PubMed] [Google Scholar]
  15. Heath E. C. Complex polysaccharides. Annu Rev Biochem. 1971;40:29–56. doi: 10.1146/annurev.bi.40.070171.000333. [DOI] [PubMed] [Google Scholar]
  16. Hemming F. W. Polyprenols. Biochem Soc Symp. 1970;29:105–117. [PubMed] [Google Scholar]
  17. Higashi Y., Siewert G., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. XIX. Isoprenoid alcohol phosphokinase. J Biol Chem. 1970 Jul 25;245(14):3683–3690. [PubMed] [Google Scholar]
  18. Higashi Y., Strominger J. L., Sweeley C. C. Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1878–1884. doi: 10.1073/pnas.57.6.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ikehara Y., Molnar J., Chao H. Inhibition of glycoprotein synthesis by cycloheximide in liver and Ehrlich tumor cells. Biochim Biophys Acta. 1971 Oct;247(3):486–495. doi: 10.1016/0005-2787(71)90035-9. [DOI] [PubMed] [Google Scholar]
  20. Kurokawa T., Ogura K., Seto S. Formation of polyprenyl phosphates by a cell-free enzyme of Micrococcus lysodeikticus. Biochem Biophys Res Commun. 1971 Oct 1;45(1):251–257. doi: 10.1016/0006-291x(71)90077-5. [DOI] [PubMed] [Google Scholar]
  21. Lahav M., Chiu T. H., Lennarz W. J. Studies on the biosynthesis of mannan in Micrococcus lysodeikticus. II. The enzymatic synthesis of mannosyl-l-phosphoryl-undecaprenol. J Biol Chem. 1969 Nov 10;244(21):5890–5898. [PubMed] [Google Scholar]
  22. Lennarz W. J., Talamo B. The chemical characterization and enzymatic synthesis of mannolipids in Micrococcus lysodeikticus. J Biol Chem. 1966 Jun 10;241(11):2707–2719. [PubMed] [Google Scholar]
  23. Northcote D. H. The synthesis and metabolic control of polysaccharides and lignin during the differentiation of plant cells. Essays Biochem. 1969;5:89–137. [PubMed] [Google Scholar]
  24. Richards J. B., Evans P. J., Hemming F. W. Dolichol phosphates as acceptors of mannose from guanosine diphosphate mannose in liver systems. Biochem J. 1971 Oct;124(5):957–959. doi: 10.1042/bj1240957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Richards J. B., Hemming F. W. Dolichols, ubiquinones, geranylgeraniol and farnesol as the major metabolites of mevalonate in Phytophthora cactorum. Biochem J. 1972 Aug;128(5):1345–1352. doi: 10.1042/bj1281345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  27. Rothfield L., Romeo D. Role of lipids in the biosynthesis of the bacterial cell envelope. Bacteriol Rev. 1971 Mar;35(1):14–38. doi: 10.1128/br.35.1.14-38.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rothschild A. M., Gascon L. A. Sulphuric esters of polysaccharides as activators of a bradykinin-forming system in plasma. Nature. 1966 Dec 17;212(5068):1364–1364. doi: 10.1038/2121364a0. [DOI] [PubMed] [Google Scholar]
  29. Scher M., Lennarz W. J. Studies on the biosynthesis of mannan in Micrococcus lysodeikticus. I. Characterization of mannan-14C formed enzymatically from mannosyl-1-phosphoryl-undecaprenol. J Biol Chem. 1969 May 25;244(10):2777–2789. [PubMed] [Google Scholar]
  30. Scher M., Lennarz W. J., Sweeley C. C. The biosynthesis of mannosyl-1-phosphoryl-polyisoprenol in Micrococcus lysodeikticus and its role in mannan synthesis. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1313–1320. doi: 10.1073/pnas.59.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Siewert G., Strominger J. L. Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc Natl Acad Sci U S A. 1967 Mar;57(3):767–773. doi: 10.1073/pnas.57.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stone K. J., Strominger J. L. Inhibition of sterol biosynthesis by bacitracin. Proc Natl Acad Sci U S A. 1972 May;69(5):1287–1289. doi: 10.1073/pnas.69.5.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stone K. J., Strominger J. L. Mechanism of action of bacitracin: complexation with metal ion and C 55 -isoprenyl pyrophosphate. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3223–3227. doi: 10.1073/pnas.68.12.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stone K. J., Wellburn A. R., Hemming F. W., Pennock J. F. The characterization of ficaprenol-10, -11 and 12 from the leaves of Ficus elastica (decorative rubber plant). Biochem J. 1967 Jan;102(1):325–330. doi: 10.1042/bj1020325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stow M., Starkey B. J., Hancock I. C., Baddiley J. Inhibition by chloramphenicol of glucose transfer in teichoic acid biosynthesis. Nat New Biol. 1971 Jan 13;229(2):56–57. doi: 10.1038/newbio229056a0. [DOI] [PubMed] [Google Scholar]
  36. Tetas M., Chao H., Molnar J. Incorporation of carbohydrates into endogenous acceptors of liver microsomal fractions. Arch Biochem Biophys. 1970 May;138(1):135–146. doi: 10.1016/0003-9861(70)90292-4. [DOI] [PubMed] [Google Scholar]
  37. Zatz M., Barondes S. H. Incorporation of mannose into mouse brain lipid. Biochem Biophys Res Commun. 1969 Aug 7;36(3):511–517. doi: 10.1016/0006-291x(69)90594-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES