Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Nov;130(1):141–151. doi: 10.1042/bj1300141

Metabolism of myricetin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro

L A Griffiths 1, G E Smith 1
PMCID: PMC1174309  PMID: 4655415

Abstract

1. The metabolism of a group of polyphenols related in structure to myricetin (3,5,7,3′,4′,5′-hexahydroxyflavone), including myricetin, myricitrin, 3,4,5-trihydroxyphenylacetic acid, delphinidin, robinetin, tricetin, tricin, malvin and 5,7-dihydroxy-3′,4′,5′-trimethoxyflavone, has been studied both in vivo after oral administration to the rat and in vitro in cultures of micro-organisms derived from the intestine of the rat. 2. It was shown that the rat intestinal microflora are able to degrade compounds of this group to the ring-fission products observed in urine after oral administration of the specific flavonoid. 3. All flavones and flavonols possessing free 5- and 7-hydroxyl groups in the A ring and a free 4′-hydroxyl group in the B ring gave rise to ring-fission products that included 3′,5′-dihydroxyphenylacyl derivatives. 4. The metabolites 3,5-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3,5-dihydroxyphenylpropionic acid and 3-hydroxyphenylpropionic acid were isolated and identified by chromatographic and spectral methods. 5. On anaerobic incubation in a thioglycollate medium it was shown that intestinal micro-organisms can effect cleavage of glycosidic bonds, ring fission of certain flavonoid molecules showing 3′,4′,5′-trihydroxyphenyl substitution and dehydroxylation of certain flavonoid metabolites. 6. The urinary excretion of the metabolites 3,5-dihydroxyphenylacetic acid and 3-hydroxyphenylacetic acid was completely abolished when neomycin-treated rats were used.

Full text

PDF
141

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BICKOFF E. M., LIVINGSTON A. L., BOOTH A. N. TRICIN FROM ALFALFA--ISOLATION AND PHYSIOLOGICAL ACTIVITY. J Pharm Sci. 1964 Nov;53:1411–1412. doi: 10.1002/jps.2600531131. [DOI] [PubMed] [Google Scholar]
  2. BIRKINSHAW J. H., BRACKEN A., MICHAEL S. E., RAISTRICK H. Studies in the biochemistry of micro-organisms; fuscin, a metabolic product of Oidiodendron fuscum Robak. Part 2. Derivatives and degradation products. Biochem J. 1951 Jan;48(1):67–74. doi: 10.1042/bj0480067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLAKLEY E. R., SIMPSON F. J. THE MICROBIAL METABOLISM OF CINNAMIC ACID. Can J Microbiol. 1964 Apr;10:175–185. doi: 10.1139/m64-025. [DOI] [PubMed] [Google Scholar]
  4. BOOTH A. N., DEEDS F., JONES F. T., MURRAY C. W. The metabolic fate of rutin and quercetin in the animal body. J Biol Chem. 1956 Nov;223(1):251–257. [PubMed] [Google Scholar]
  5. BOOTH A. N., JONES F. T., DEEDS F. Metabolic and glucosuria studies on naringin and phloridzin. J Biol Chem. 1958 Aug;233(2):280–282. [PubMed] [Google Scholar]
  6. BOOTH A. N., JONES F. T., DeEDS F. Metabolic fate of hesperidin, eriodictyol, homoeridictyol, and diosmin. J Biol Chem. 1958 Feb;230(2):661–668. [PubMed] [Google Scholar]
  7. BOOTH A. N., MASRI M. S., ROBBINS D. J., EMERSON O. H., JONES F. T., DE EDS F. The metabolic fate of gallic acid and related compounds. J Biol Chem. 1959 Nov;234:3014–3016. [PubMed] [Google Scholar]
  8. BRAY H. G., THORPE W. V. Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal. 1954;1:27–52. doi: 10.1002/9780470110171.ch2. [DOI] [PubMed] [Google Scholar]
  9. Blackmore M. A., Quayle J. R. Microbial growth on oxalate by a route not involving glyoxylate carboligase. Biochem J. 1970 Jun;118(1):53–59. doi: 10.1042/bj1180053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CHANDLER B. V. Anthocyanins of blood oranges. Nature. 1958 Oct 4;182(4640):933–933. doi: 10.1038/182933a0. [DOI] [PubMed] [Google Scholar]
  11. Campbell W. G., McGowan J. C., Bryant S. A. The chlorine-sodium sulphite colour reaction of woody tissues: The bearing of the colour reaction on the constitution of hardwood lignin. Biochem J. 1938 Dec;32(12):2138–2141. doi: 10.1042/bj0322138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cheng K. J., Jones G. A., Simpson F. J., Bryant M. P. Isolation and identification of rumen bacteria capable of anaerobic rutin degradation. Can J Microbiol. 1969 Dec;15(12):1365–1371. doi: 10.1139/m69-247. [DOI] [PubMed] [Google Scholar]
  13. DEEDS F., BOOTH A. N., JONES F. T. Methylation and dehydroxylation of phenolic compounds by rats and rabbits. J Biol Chem. 1957 Apr;225(2):615–621. [PubMed] [Google Scholar]
  14. Dacre J. C., Scheline R. R., Williams R. T. The role of the tissues and gut flora in the metabolism of [14C]homoprotocatechuic acid in the rat and rabbit. J Pharm Pharmacol. 1968 Aug;20(8):619–625. doi: 10.1111/j.2042-7158.1968.tb09823.x. [DOI] [PubMed] [Google Scholar]
  15. Das N. P., Griffiths L. A. Studies on flavonoid metabolism. Metabolism of (+)-catechin in the guinea pig. Biochem J. 1968 Dec;110(3):449–456. doi: 10.1042/bj1100449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Das N. P., Griffiths L. A. Studies on flavonoid metabolism. Metabolism of flavone in the guinea pig. Biochem J. 1966 Feb;98(2):488–492. doi: 10.1042/bj0980488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. FERGUSON W. S., ASHWORTH DE B., TERRY R. A. Identity of a muscle-inhibiting flavone in lucerne. Nature. 1950 Jul 15;166(4211):116–117. doi: 10.1038/166116a0. [DOI] [PubMed] [Google Scholar]
  18. Griffiths L. A. 3,5-Dihydroxyphenylpropionic acid, a further metabolite of sinapic acid. Experientia. 1970;26(7):723–724. doi: 10.1007/BF02232505. [DOI] [PubMed] [Google Scholar]
  19. Griffiths L. A. Metabolism of sinapic acid and related compounds in the rat. Biochem J. 1969 Jul;113(4):603–609. doi: 10.1042/bj1130603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Griffiths L. A., Smith G. E. Metabolism of apigenin and related compounds in the rat. Metabolite formation in vivo and by the intestinal microflora in vitro. Biochem J. 1972 Jul;128(4):901–911. doi: 10.1042/bj1280901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Griffiths L. A. Studies on flavonoid metabolism. Identification of the metabolities of (+)-catechin in rat urine. Biochem J. 1964 Jul;92(1):173–179. doi: 10.1042/bj0920173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. JURD L. A spectrophotometric method for the detection of o-dihydroxyl groups in flavonoid compounds. Arch Biochem Biophys. 1956 Aug;63(2):376–381. doi: 10.1016/0003-9861(56)90052-2. [DOI] [PubMed] [Google Scholar]
  23. NAKAGAWA Y., SHETLAR M. R., WENDER S. H. SPECTRAL IDENTIFICATION STUDIES OF PHENOLIC ACIDS USING ALUMINUM CHLORIDE. Anal Biochem. 1964 Mar;7:374–378. doi: 10.1016/0003-2697(64)90146-0. [DOI] [PubMed] [Google Scholar]
  24. NAKAGAWA Y., SHETLAR M. R., WENDER S. H. URINARY PRODUCTS FROM QUERCETIN IN NEOMYCIN-TREATED RATS. Biochim Biophys Acta. 1965 Feb 15;97:233–241. doi: 10.1016/0304-4165(65)90087-5. [DOI] [PubMed] [Google Scholar]
  25. SWAIN T. The identification of coumarins and related compounds by filter-paper chromatography. Biochem J. 1953 Jan;53(2):200–208. doi: 10.1042/bj0530200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scheline R. R. Decarboxylation and demethylation of some phenolic benzoic acid derivatives by rat caecal contents. J Pharm Pharmacol. 1966 Oct;18(10):664–669. doi: 10.1111/j.2042-7158.1966.tb07780.x. [DOI] [PubMed] [Google Scholar]
  27. Scheline R. R. The decarboxylation of some phenolic acids by the rat. Acta Pharmacol Toxicol (Copenh) 1966;24(2):275–285. doi: 10.1111/j.1600-0773.1966.tb00390.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES