Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Nov;130(2):383–390. doi: 10.1042/bj1300383

The bacterial degradation of flavonoids. Oxidative fission of the A-ring of dihydrogossypetin by a Pseudomonas sp

A M Jeffrey 1, D M Jerina 1, R Self 1, W C Evans 1
PMCID: PMC1174417  PMID: 4198081

Abstract

Cell-free extracts prepared from a Pseudomonas sp., grown on (+)-catechin, oxidized dihydrogossypetin (3′,4′,5,7,8-pentahydroxyflavanonol) by cleaving the A-ring to form oxaloacetic acid from C-5, C-6, C-7 and C-8 together with 5-(3,4-dihydroxyphenyl)-4-hydroxy-3-oxovalero-δ-lactone. The structure of this lactone was confirmed by synthesis of related phenylvalerolactones.

Full text

PDF
383

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOOTH A. N., DEEDS F., JONES F. T., MURRAY C. W. The metabolic fate of rutin and quercetin in the animal body. J Biol Chem. 1956 Nov;223(1):251–257. [PubMed] [Google Scholar]
  2. BOOTH A. N., DEEDS F. The toxicity and metabolism of dihydroquercetin. J Am Pharm Assoc Am Pharm Assoc. 1958 Mar;47(3 Pt 1):183–184. [PubMed] [Google Scholar]
  3. Das N. P., Griffiths L. A. Studies on flavonoid metabolism. Metabolism of (+)-[14C] catechin in the rat and guinea pig. Biochem J. 1969 Dec;115(4):831–836. doi: 10.1042/bj1150831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Das N. P., Griffiths L. A. Studies on flavonoid metabolism. Metabolism of (+)-catechin in the guinea pig. Biochem J. 1968 Dec;110(3):449–456. doi: 10.1042/bj1100449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Das N. P., Sothy S. P. Studies on flavonoid metabolism. Biliary and urinary excretion of metabolites of (+)-(U- 14 C)catechin. Biochem J. 1971 Nov;125(2):417–423. doi: 10.1042/bj1250417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jeffrey A. M., Knight M., Evans W. C. The bacterial degradation of flavonoids. Hydroxylation of the A-ring of taxifolin by a soil pseudomonad. Biochem J. 1972 Nov;130(2):373–381. doi: 10.1042/bj1300373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Raistrick H., Rice F. H. 2,3-Dihydro-3,6-dihydroxy-2-methyl-4-pyrone and curvularin from Penicillium gilmanii. J Chem Soc Perkin 1. 1971;18:3069–3070. doi: 10.1039/j39710003069. [DOI] [PubMed] [Google Scholar]
  8. Rosenbrook W., Jr, Carney R. E. A new metabolite from an unidentified Aspergillus species. Tetrahedron Lett. 1970 May;(22):1867–1870. doi: 10.1016/s0040-4039(01)98104-3. [DOI] [PubMed] [Google Scholar]
  9. WATKIN J. E., UNDERHILL E. W., NEISH A. C. Biosynthesis of quercetin in buckwheat. II. Can J Biochem Physiol. 1957 Mar;35(3):229–237. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES