Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Nov;130(2):443–452. doi: 10.1042/bj1300443

The primary structure of aspartate aminotransferase from pig heart muscle. Partial sequences determined by digestion with pepsin and trypsin

S Doonan 1,2, Hilary J Doonan 1,2, Francesca Riva 1,2, C A Vernon 1,2, J M Walker 1,2, Francesco Bossa 1,2, Donatella Barra 1,2, Massimo Carloni 1,2, Paolo Fasella 1,2
PMCID: PMC1174424  PMID: 4578129

Abstract

Peptides obtained by tryptic digestion of carboxymethylated and maleylated aspartate aminotransferase and of the aminoethylated enzyme were isolated and the complete amino acid sequences of most of them were determined. Digestion of the carboxymethylated protein with pepsin produced a complex mixture of peptides that allowed some overlapping of the tryptic peptides (Fig. 4); in addition, peptides were obtained that had not been found in either of the tryptic digests. From these studies about 400 amino acid residues were identified. Experimental details and confirmatory data for the results presented here are given in a supplementary paper that has been deposited as Supplementary Publication 50011 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1972) 126, 5.

Full text

PDF
443

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAUNSHTEIN A. E., SHEMIAKIN M. M. Teoriia protsessov aminokislotnogo obmena, kataliziruemykh piridoksalevymi enzimami. Biokhimiia. 1953 Jul-Aug;18(4):393–411. [PubMed] [Google Scholar]
  2. Banks B. E., Doonan S., Gauldie J., Lawrence A. J., Vernon C. A. The dissociation into subunits of aspartate aminotransferase from pig heart muscle. Eur J Biochem. 1968 Dec 5;6(4):507–513. doi: 10.1111/j.1432-1033.1968.tb00474.x. [DOI] [PubMed] [Google Scholar]
  3. Banks B. E., Doonan S., Lawrence A. J., Vernon C. A. The molecular weight and other properties of aspartate aminotransferase from pig heart muscle. Eur J Biochem. 1968 Sep 24;5(4):528–539. doi: 10.1111/j.1432-1033.1968.tb00402.x. [DOI] [PubMed] [Google Scholar]
  4. Bossa F., Barra D., Vecchini P., Turano C. Effect of carboxyl group modifications upon the structure of aspartate aminotransferase. Enzymologia. 1971 Jun 30;40(6):369–383. [PubMed] [Google Scholar]
  5. Butler P. J., Harris J. I., Hartley B. S., Lebeman R. The use of maleic anhydride for the reversible blocking of amino groups in polypeptide chains. Biochem J. 1969 May;112(5):679–689. doi: 10.1042/bj1120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  7. Crowshaw K., Jessup S. J., Ramwell P. W. Thin-layer chromatography of 1-dimethylaminonaphthalene-5-sulphonyl derivatives of amino acids present in superfusates of cat cerebral cortex. Biochem J. 1967 Apr;103(1):79–85. doi: 10.1042/bj1030079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. EDMAN P. Phenylthiohydantoins in protein analysis. Ann N Y Acad Sci. 1960 Aug 31;88:602–610. doi: 10.1111/j.1749-6632.1960.tb20056.x. [DOI] [PubMed] [Google Scholar]
  9. Fasella P., Hammes G. G. A temperature jump study of aspartate aminotransferase. a reinvestigation. Biochemistry. 1967 Jun;6(6):1798–1804. doi: 10.1021/bi00858a031. [DOI] [PubMed] [Google Scholar]
  10. Fasella P., Turano C. Structure and catalytic role of the functional groups of aspartate aminotransferase. Vitam Horm. 1970;28:157–194. doi: 10.1016/s0083-6729(08)60893-6. [DOI] [PubMed] [Google Scholar]
  11. Feliss N., Martinez-Carrion M. The molecular weight and subunits of the isozymes of glutamic aspartic transaminase. Biochem Biophys Res Commun. 1970 Aug 24;40(4):932–940. doi: 10.1016/0006-291x(70)90993-9. [DOI] [PubMed] [Google Scholar]
  12. HUGHES R. C., JENKINS W. T., FISCHER E. H. The site of binding of pyridoxal-5'-phosphate to heart glutamic-aspartic transaminase. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1615–1618. doi: 10.1073/pnas.48.9.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. JENKINS W. T., YPHANTIS D. A., SIZER I. W. Glutamic aspartic transaminase. I. Assay, purification, and general properties. J Biol Chem. 1959 Jan;234(1):51–57. [PubMed] [Google Scholar]
  15. Martinez-Carrion M., Riva F., Turano C., Fasella P. Multiple forms of supernatant glutamate-aspartate transaminase from pig heart. Biochem Biophys Res Commun. 1965 Jul 12;20(2):206–211. doi: 10.1016/0006-291x(65)90347-5. [DOI] [PubMed] [Google Scholar]
  16. Martinez-Carrion M., Turano C., Chiancone E., Bossa F., Giartosio A., Riva F., Fasella P. Isolation and characterization of multiple forms of glutamate-asparate aminotransferase from pig heart. J Biol Chem. 1967 May 25;242(10):2397–2409. [PubMed] [Google Scholar]
  17. Morino Y., Watanabe T. Primary structure of pyridoxal phosphate binding site in the mitochondrial and extramitochondrial aspartate aminotransferases from pig heart muscle. Chymotryptic peptides. Biochemistry. 1969 Aug;8(8):3412–3417. doi: 10.1021/bi00836a041. [DOI] [PubMed] [Google Scholar]
  18. Offord R. E. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966 Aug 6;211(5049):591–593. doi: 10.1038/211591a0. [DOI] [PubMed] [Google Scholar]
  19. Ovchinnikov Y. A., Kiryushkin A. A., Egorov T. A., Abdulaev N. G., Kiselev A. P., Modyanov N. N., Grishin E. V., Vinogradova E. I., Feigina M. Y., Aldanova N. A. The primary structure of cytoplasmatic aspartate aminotransferase from pig heart muscle tryptic hydrolysis products. FEBS Lett. 1971 Jan 25;12(4):194–196. doi: 10.1016/0014-5793(71)80018-2. [DOI] [PubMed] [Google Scholar]
  20. Ovchinnikov Yu A., Kiryushkin A. A., Egorov Ts A., Abdulaev N. G., Kiselev A. P., Modyanov N. N., Grishin E. V., Sukhikh A. P., Vinogradova E. I., Feigina M. Yu. Cytoplasmic aspartate aminotransferase from pig heart muscle: Partial sequence. FEBS Lett. 1971 Sep 15;17(1):133–136. doi: 10.1016/0014-5793(71)80581-1. [DOI] [PubMed] [Google Scholar]
  21. POLIANOVSKII O. L., IVANOV V. I. O DISSOTSIATSII ASPARTAT-GLUTAMAT-TRANSAMINAZY NA SUB''EDINITSY. Biokhimiia. 1964 Jul-Aug;29:728–734. [PubMed] [Google Scholar]
  22. POLIANOVSKII O. L., KEIL B. A. STRUKTURA PEPTIDNOGO FRAGMENTA IZ AKTIVNOGO TSENTRA ASPARTAT-GLIUTAMAT-TRANSAMINAZY. Biokhimiia. 1963 May-Jun;28:372–379. [PubMed] [Google Scholar]
  23. POLYANOVSKY O. L. REVERSIBLE DISSOCIATION OF SUCCINYLATED ASPARTATE TRANSAMINASE INTO SUBUNITS. Biochem Biophys Res Commun. 1965 Apr 23;19:364–370. doi: 10.1016/0006-291x(65)90470-5. [DOI] [PubMed] [Google Scholar]
  24. Polianovskii O. L., Shpikiter V. O. Dissotsiatsiia aspartat-transaminazy na sub"edinitsy v kisloi i shchelochnoi srede. Dokl Akad Nauk SSSR. 1965 Aug 1;163(4):1011–1013. [PubMed] [Google Scholar]
  25. Polianovskii O. L., Vorotnitskaia N. E. Sravnitel'noe issledovanie metodom peptidnykh kart dvukh aspartat-transaminaz razlichnogo proizkhozhdeniia. Biokhimiia. 1965 May-Jun;30(3):619–627. [PubMed] [Google Scholar]
  26. Pétra P. H., Bradshaw R. A., Walsh K. A., Neurath H. Identification of the amino acid replacements characterizing the allotypic forms of bovine carboxypeptidase A. Biochemistry. 1969 Jul;8(7):2762–2768. doi: 10.1021/bi00835a011. [DOI] [PubMed] [Google Scholar]
  27. SANGER F., THOMPSON E. O. Halogenation of tyrosine during acid hydrolysis. Biochim Biophys Acta. 1963 May 14;71:468–471. doi: 10.1016/0006-3002(63)91108-9. [DOI] [PubMed] [Google Scholar]
  28. Turano C., Giartosio A., Riva F., Baroncelli V. Acylation of aspartate aminotransferase. Biochem J. 1967 Sep;104(3):970–977. doi: 10.1042/bj1040970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WALEY S. G., WATSON J. The action of trypsin on polylysine. Biochem J. 1953 Sep;55(2):328–337. doi: 10.1042/bj0550328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wada H., Watanabe T., Miyatake A. Comparative studies on the primary structure of soluble and mitochondrial glutamic oxaloacetic transaminase isozymes. II. Amino acid sequence of the amino terminal fragments. Biochem Biophys Res Commun. 1971 Jun 18;43(6):1318–1323. doi: 10.1016/s0006-291x(71)80016-5. [DOI] [PubMed] [Google Scholar]
  31. Woods K. R., Wang K. T. Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta. 1967 Feb 21;133(2):369–370. doi: 10.1016/0005-2795(67)90078-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES