Abstract
1. The concentrations of folate derivatives in aerobic cultures of Saccharomyces cerevisiae (A.T.C.C. 9763) were determined by microbiological assay employing Lactobacillus casei (A.T.C.C. 7469) and Pediococcus cerevisiae (A.T.C.C. 8081). Cells cultured in media lacking l-methionine contained higher concentrations of folate derivatives than cells grown in the same media supplemented with 2.5μmol of l-methionine/ml. The concentrations of highly conjugated derivatives were also decreased by supplementing the growth medium with l-methionine. 2. DEAE-cellulose column chromatography of extracts prepared from cells grown under these conditions revealed that the concentrations of methylated tetrahydrofolates were drastically decreased by the methionine supplement. Smaller decreases were also observed in the concentrations of formylated and unsubstituted derivatives. 3. The concentrations of four enzymes of C1 metabolism were compared after 6h of growth in the presence and in the absence of l-methionine (2.5μmol/ml). The specific activities of formyltetrahydrofolate synthetase, methylenetetrahydrofolate reductase and serine hydroxymethyltransferase were not altered by this treatment but that of 5-methyltetrahydrofolate–homocysteine methyltransferase was decreased by approx. 65% when l-methionine was supplied. The activities of 5-methyltetrahydrofolate–homocysteine methyltransferase, serine hydroxymethyltransferase and formyltetrahydrofolate synthetase were not appreciably altered by l-methionine in vitro. In contrast this amino acid was found to inhibit the activity of methylenetetrahydrofolate reductase. 4. Feeding experiments employing sodium [14C]formate indicated that cells grown in the presence of exogenous methionine, although having less ability to convert formate into methionine, readily incorporated 14C into serine and the adenosyl moiety of S-adenosylmethionine. 5. It is suggested that exogenous l-methionine controls C1 metabolism in Saccharomyces principally by regulation of methyl-group biogenesis within the folate pool.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBRECHT A. M., HUTCHISON D. J. REPRESSION BY ADENINE OF THE FORMYLTETRAHYDROFOLATE SYNTHETASE IN AN ANTIFOLIC-RESISTANT MUTANT OF STREPTOCOCCUS FAECALIS. J Bacteriol. 1964 Apr;87:792–798. doi: 10.1128/jb.87.4.792-798.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAKERMAN H. A. A method for measuring the microbiological activity of tetrahydrofolic acid and other labile reduced folic acid derivatives. Anal Biochem. 1961 Dec;2:558–567. doi: 10.1016/0003-2697(61)90023-9. [DOI] [PubMed] [Google Scholar]
- Bird O. D., McGlohon V. M., Vaitkus J. W. Naturally occurring folates in the blood and liver of the rat. Anal Biochem. 1965 Jul;12(1):18–35. doi: 10.1016/0003-2697(65)90138-7. [DOI] [PubMed] [Google Scholar]
- Botsford J. L., Jr, Parks L. W. Serine transhydroxymethylase in methionine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1969 Mar;97(3):1176–1183. doi: 10.1128/jb.97.3.1176-1183.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burchall J. J., Hitchings G. H. The role of metabolites and antimetabolites in the control of folate coenzyme synthesis. Adv Enzyme Regul. 1968;6:323–333. doi: 10.1016/0065-2571(68)90020-4. [DOI] [PubMed] [Google Scholar]
- Burton E., Selhub J., Sakami W. The substrate specificity of 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase. Biochem J. 1969 Mar;111(5):793–795. doi: 10.1042/bj1110793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan P. Y., Cossins E. A. Regulation of arginase levels by urea and intermediates of the Krebs-Henseleit cycle in Saccharomyces cerevisiae. FEBS Lett. 1972 Jan 1;19(4):335–339. doi: 10.1016/0014-5793(72)80074-7. [DOI] [PubMed] [Google Scholar]
- Combepine G., Cossins E. A., Lor K. L. Regulation of pteroylglutamate pool size by methionine in Saccharomyces cerevisiae. FEBS Lett. 1971 Apr 12;14(1):49–53. doi: 10.1016/0014-5793(71)80272-7. [DOI] [PubMed] [Google Scholar]
- Dickerman H., Weissbach H. Altered folate metabolism in a vitamin B 12-methionine auxotroph. Biochem Biophys Res Commun. 1964 Aug 11;16(6):593–599. doi: 10.1016/0006-291x(64)90198-6. [DOI] [PubMed] [Google Scholar]
- Dodd W. A., Cossins E. A. Homocysteine-dependent transmethylases catalyzing the synthesis of methionine in germinating pea seeds. Biochim Biophys Acta. 1970 Mar 24;201(3):461–470. doi: 10.1016/0304-4165(70)90166-2. [DOI] [PubMed] [Google Scholar]
- Dodd W. A., Cossins E. A. Metabolism of S-adenosylmethionine in germinating pea seeds: turnover and possible relationships between recycling of sulfur and transmethylation reactions. Arch Biochem Biophys. 1969 Sep;133(2):216–223. doi: 10.1016/0003-9861(69)90448-2. [DOI] [PubMed] [Google Scholar]
- FOX M. R., LUDWIG W. J., BAROODY M. C. Effects of vitamin B12 and methionine on excretion of formiminoglutamic acid by the chick. Proc Soc Exp Biol Med. 1961 Aug-Sep;107:723–727. doi: 10.3181/00379727-107-26735. [DOI] [PubMed] [Google Scholar]
- HERBERT V., ZALUSKY R. Interrelations of vitamin B12 and folic acid metabolism: folic acid clearance studies. J Clin Invest. 1962 Jun;41:1263–1276. doi: 10.1172/JCI104589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiatt A. J. Formic Acid Activation in Plants. I. Purification, Properties and Distribution of Formyltetrahydrofolate Synthetase. Plant Physiol. 1965 Jan;40(1):184–188. doi: 10.1104/pp.40.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KISLIUK R. L. THE ROLE OF ADENOSYLMETHIONINE AND 5-METHYLTETRAHYDROFOLATE IN THE REGULATION OF THE METABOLISM OF SINGLE CARBON UNITS. Medicine (Baltimore) 1964 Nov;43:711–713. doi: 10.1097/00005792-196411000-00014. [DOI] [PubMed] [Google Scholar]
- Kutzbach C., Stokstad E. L. Feedback inhibition of methylene-tetrahydrofolate reductase in rat liver by S-adenosylmethionine. Biochim Biophys Acta. 1967 May 16;139(1):217–220. doi: 10.1016/0005-2744(67)90140-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Ohara O., Silber R. Studies on the regulation of one-carbon metabolism. The effects of folate concentration in the growth medium on the activity of three folate-dependent enzymes in Lactobacillus casei. J Biol Chem. 1969 Apr 25;244(8):1988–1993. [PubMed] [Google Scholar]
- PARKS L. W., SCHLENK F. The stability and hydrolysis of S-adenosylmethionine; isolation of S-ribosylmethionine. J Biol Chem. 1958 Jan;230(1):295–305. [PubMed] [Google Scholar]
- PIGG C. J., SPENCE K. D., PARKS L. W. Methionine biosynthesis in yeast. Arch Biochem Biophys. 1962 Jun;97:491–496. doi: 10.1016/0003-9861(62)90112-1. [DOI] [PubMed] [Google Scholar]
- ROWBURY R. J., WOODS D. D. Further studies on the repression of methionine synthesis in Escherichia coli. J Gen Microbiol. 1961 Jan;24:129–144. doi: 10.1099/00221287-24-1-129. [DOI] [PubMed] [Google Scholar]
- Robichon-Szulmajster H. Diversité des types de régulation impliqués dans la biosynthèse de la thréonine et de la méthionine chez Saccharomyces cerevisiae. Biochimie. 1971;53(2):131–134. doi: 10.1016/s0300-9084(71)80043-3. [DOI] [PubMed] [Google Scholar]
- Roos A. J., Cossins E. A. Pteroylglutamate derivatives in Pisum sativum L. Biosynthesis of cotyledonary tetrahydropteroylglutamates during germination. Biochem J. 1971 Nov;125(1):17–26. doi: 10.1042/bj1250017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHLENK F., DEPALMA R. E. The preparation of S-adenosylmethionine. J Biol Chem. 1957 Dec;229(2):1051–1057. [PubMed] [Google Scholar]
- SILVERMAN M., PITNEY A. J. Dietary methionine and the excretion of formiminoglutamic acid by the rat. J Biol Chem. 1958 Nov;233(5):1179–1182. [PubMed] [Google Scholar]
- Shapiro S. K., Ehninger D. J. Methods for the analysis and preparation of adenosylmethionine and adenosylhomocysteine. Anal Biochem. 1966 May;15(2):323–333. doi: 10.1016/0003-2697(66)90038-8. [DOI] [PubMed] [Google Scholar]
- Taylor R. T., Dickerman H., Weissbach H. Control of one-carbon metabolism in a methionine-B12 auxotroph of Escherichia coli. Arch Biochem Biophys. 1966 Nov;117(2):405–412. doi: 10.1016/0003-9861(66)90429-2. [DOI] [PubMed] [Google Scholar]
- Whiteley H. R. Induced synthesis of formyltetrahydrofolate synthetase in Micrococcus aerogenes. Arch Mikrobiol. 1967;59(1):315–323. doi: 10.1007/BF00406345. [DOI] [PubMed] [Google Scholar]
