Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1972 Dec;130(3):785–790. doi: 10.1042/bj1300785

Ketogenesis from butyrate and acetate by the caecum and the colon of rabbits

Susan J Henning 1, F J R Hird 1
PMCID: PMC1174516  PMID: 4664932

Abstract

1. When studied in vitro, tissue from the caecum and the proximal colon of rabbits converted butyrate into ketone bodies. The conversion was similar to that observed with liver slices. The ketogenic activity was associated with the mucosa rather than the muscle of the gut wall and, in the colon, diminished as the distance from the caecal–colonic junction increased. 2. Tissue from the wall of the ileum, caecum, proximal colon and distal colon was also shown to metabolize [1-14C]butyrate to carbon dioxide. 3. Enzyme assays showed that in both liver tissue and caecal mucosa the activity of hydroxymethylglutaryl-CoA synthase was more than ten times that of acetoacetyl-CoA deacylase. Labelling experiments in vitro gave confirmation of the hydroxymethylglutaryl-CoA pathway. 4. The significance of the conversion of butyrate into ketone bodies is discussed.

Full text

PDF
785

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANNISON E. F., HILL K. J., LEWIS D. Studies on the portal blood of sheep. II. Absorption of volatile fatty acids from the rumen of the sheep. Biochem J. 1957 Aug;66(4):592–599. doi: 10.1042/bj0660592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anand R. S., Black A. L. Species difference in the glucogenic behavior of butyrate in lactating ruminants. Comp Biochem Physiol. 1970 Mar 1;33(1):129–142. doi: 10.1016/0010-406x(70)90488-3. [DOI] [PubMed] [Google Scholar]
  3. Ash R. W., Pennington R. J., Reid R. S. The effect of short-chain fatty acids on blood glucose concentration in sheep. Biochem J. 1964 Feb;90(2):353–360. doi: 10.1042/bj0900353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BEINERT H., STANSLY P. G. Asymmetric labeling of acetoacetate by enzymatic acetyl exchange with acetyl coenzyme A. J Biol Chem. 1953 Sep;204(1):67–76. [PubMed] [Google Scholar]
  5. Baird G. D., Hibbitt K. G., Lee J. Enzymes involved in acetoacetate formation in various bovine tissues. Biochem J. 1970 May;117(4):703–709. doi: 10.1042/bj1170703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burch R. E., Curran G. L. Hepatic acetoacetyl-CoA deacylase activity in rats fed ethyl chlorophenoxyisobutyrate (CPIB). J Lipid Res. 1969 Nov;10(6):668–673. [PubMed] [Google Scholar]
  7. CALDWELL I. C., DRUMMOND G. I. Synthesis of acetoacetate by liver enzymes. J Biol Chem. 1963 Jan;238:64–68. [PubMed] [Google Scholar]
  8. DRUMMOND G. I., STERN J. R. Enzymes of ketone body metabolism. II. Properties of an acetoacetate-synthesizing enzyme prepared from ox liver. J Biol Chem. 1960 Feb;235:318–325. [PubMed] [Google Scholar]
  9. HIRD F. J., SYMONS R. H. The mechanism of ketone-body formation from butyrate in rat liver. Biochem J. 1962 Jul;84:212–216. doi: 10.1042/bj0840212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HIRD F. J., SYMONS R. H. The metabolism of glucose and butyrate by the omasum of the sheep. Biochim Biophys Acta. 1959 Oct;35:422–434. doi: 10.1016/0006-3002(59)90392-0. [DOI] [PubMed] [Google Scholar]
  11. HIRD F. J., SYMONS R. H. The mode of formation of ketone bodies from butyrate by tissue from the rumen and omasum of the sheep. Biochim Biophys Acta. 1961 Jan 29;46:457–467. doi: 10.1016/0006-3002(61)90577-7. [DOI] [PubMed] [Google Scholar]
  12. Hawkins R. A., Williamson D. H., Krebs H. A. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J. 1971 Mar;122(1):13–18. doi: 10.1042/bj1220013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henning S. J., Hird F. J. Diurnal variations in the concentrations of volatile fatty acids in the alimentary tracts of wild rabbits. Br J Nutr. 1972 Jan;27(1):57–64. doi: 10.1079/bjn19720069. [DOI] [PubMed] [Google Scholar]
  14. Henning S. J., Hird F. J. Transport of acetate and butyrate in the hind-gut of rabbits. Biochem J. 1972 Dec;130(3):791–796. doi: 10.1042/bj1300791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hennings S. J., Hird F. J. Concentrations and metabolism of volatile fatty acids in the fermentative organs of two species of kangaroo and the guinea-pig. Br J Nutr. 1970 Mar;24(1):145–155. doi: 10.1079/bjn19700017. [DOI] [PubMed] [Google Scholar]
  16. Ide T., Steinke J., Cahill G. F., Jr Metabolic interactions of glucose, lactate, and beta-hydroxybutyrate in rat brain slices. Am J Physiol. 1969 Sep;217(3):784–792. doi: 10.1152/ajplegacy.1969.217.3.784. [DOI] [PubMed] [Google Scholar]
  17. Ito T., Quastel J. H. Acetoacetate metabolism in infant and adult rat brain in vitro. Biochem J. 1970 Feb;116(4):641–655. doi: 10.1042/bj1160641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LYNEN F., HENNING U., BUBLITZ C., SORBO B., KROPLIN-RUEFF L. Der chemische Mechanismus der Acetessigsäurebildung in der Leber. Biochem Z. 1958;330(4):269–295. [PubMed] [Google Scholar]
  19. Leng R. A., Annison E. F. The metabolism of D(--)-beta-hydroxybutyrate in sheep. Biochem J. 1964 Mar;90(3):464–469. doi: 10.1042/bj0900464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Little J. R., Goto M., Spitzer J. J. Effect of ketones on metabolism of FFA by dog myocardium and skeletal muscle in vivo. Am J Physiol. 1970 Nov;219(5):1458–1463. doi: 10.1152/ajplegacy.1970.219.5.1458. [DOI] [PubMed] [Google Scholar]
  21. Mayes P. A., Felts J. M. Regulation of fat metabolism of the liver. Nature. 1967 Aug 12;215(5102):716–718. doi: 10.1038/215716a0. [DOI] [PubMed] [Google Scholar]
  22. Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., Cahill G. F., Jr Brain metabolism during fasting. J Clin Invest. 1967 Oct;46(10):1589–1595. doi: 10.1172/JCI105650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. PARSONS D. S., PATERSON G. R. Movements of fluid and glucose in an everted sac preparation of rat colonic mucosa. Biochim Biophys Acta. 1960 Jun 17;41:173–175. doi: 10.1016/0006-3002(60)90393-0. [DOI] [PubMed] [Google Scholar]
  24. PENNINGTON R. J., APPLETON J. M. Further studies on the inhibition of acetate metabolism by propionate. Biochem J. 1958 May;69(1):119–125. doi: 10.1042/bj0690119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. PENNINGTON R. J. The metabolism of short-chain fatty acids in the sheep. I. Fatty acid utilization and ketone body production by rumen epithelium and other tissues. Biochem J. 1952 May;51(2):251–258. doi: 10.1042/bj0510251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. PENNINGTON R. J. The metabolism of short-chain fatty acids in the sheep. II. Further studies with rumen epithelium. Biochem J. 1954 Mar;56(3):410–416. doi: 10.1042/bj0560410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RUDNEY H., FERGUSON J. J., Jr The biosynthesis of beta-hydroxy-beta-methylglutaryl coenzyme A in yeast. II. The formation of hydroxymethylglutaryl coenzyme A via the condensation of acetyl coenzyme A and acetoacetyl coenzyme A. J Biol Chem. 1959 May;234(5):1076–1080. [PubMed] [Google Scholar]
  28. Rolleston F. S., Newsholme E. A. Effects of fatty acids, ketone bodies, lactate and pyruvate on glucose utilization by guinea-pig cerebral cortex slices. Biochem J. 1967 Aug;104(2):519–523. doi: 10.1042/bj1040519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. STERN J. R. Optical properties of aceto-acetyl-S-coenzyme A and its metal chelates. J Biol Chem. 1956 Jul;221(1):33–44. [PubMed] [Google Scholar]
  30. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Williamson D. H., Bates M. W., Krebs H. A. Activity and intracellular distribution of enzymes of ketone-body metabolism in rat liver. Biochem J. 1968 Jul;108(3):353–361. doi: 10.1042/bj1080353. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES