Abstract
Measurements were made of the stoicheiometry of proton-translocation coupled to NAD(P)H oxidation by several quinones (duroquinone, ubiquinone0, ubiquinone1, ubiquinone2) in mitochondria from rat liver and ox heart. Observed stoicheiometries of protons translocated per mol of NADH oxidized (→H+/2e− ratios; Mitchell, 1966) ranged from 0.75 (rat liver mitochondria with ubiquinone1) to 1.55 (ox heart mitochondria with ubiquinone1 or ubiquinone2). Only the rotenone-sensitive pathway of NADH oxidation by quinone was able to support proton translocation. Correction of the observed →H+/2e− ratios for the loss of reducing equivalents to the rotenone-insensitive pathway increased their value to approx. 2.0. It is concluded that the rotenone-sensitive NADH– ubiquinone reductase activity of the respiratory chain may be organized in the mitochondrial membrane as a proton-translocating oxidoreduction loop. The number of such loops between NADH and ubiquinone is one, and not two, as initially proposed by Mitchell (1966).
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albracht S. P., Slater E. C. Effect of ATP on the EPR spectrum at 20 degrees K of phosphorylating sub-mitochondrial particles. Biochim Biophys Acta. 1971 Sep 7;245(2):508–511. doi: 10.1016/0005-2728(71)90169-1. [DOI] [PubMed] [Google Scholar]
- Boveris A., Oshino R., Erecińska M., Chance B. Reduction of mitochondrial components by durohydroquinone. Biochim Biophys Acta. 1971 Aug 6;245(1):1–16. doi: 10.1016/0005-2728(71)90002-8. [DOI] [PubMed] [Google Scholar]
- CONOVER T. E., ERNSTER L. DT diaphorase. II. Relation to respiratory chain of intact mitochondira. Biochim Biophys Acta. 1962 Apr 9;58:189–200. doi: 10.1016/0006-3002(62)90998-8. [DOI] [PubMed] [Google Scholar]
- Chance B. The nature of electron transfer and energy coupling reactions. FEBS Lett. 1972 Jun 1;23(1):3–20. doi: 10.1016/0014-5793(72)80272-2. [DOI] [PubMed] [Google Scholar]
- Chappell J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem J. 1964 Feb;90(2):225–237. doi: 10.1042/bj0900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clegg R. A., Ragan C. I., Haddock B. A., Light P. A., Garland P. B., Swann J. C., Bray R. C. Inter-relationships between mitochondrial energy conservation at site I, piericidin a sensitivity, and EPR spectra in torulopsis utilis. FEBS Lett. 1969 Nov 12;5(3):207–210. doi: 10.1016/0014-5793(69)80333-9. [DOI] [PubMed] [Google Scholar]
- Garland P. B., Shepherd D., Yates D. W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinius L. L., Guds T. I., Skulachev V. P. Arrangement of the electric potential-generating redox chain in the mitochondrial membrane. J Bioenerg. 1971 May;2(2):101–113. doi: 10.1007/BF01648925. [DOI] [PubMed] [Google Scholar]
- Gutman M., Mayr M., Oltzik R., Singer T. P. Effect of ATP on the redox cycle of respiratory chain-linked DPNH dehydrogenase and the localization of coupling site I. Biochem Biophys Res Commun. 1970 Oct 9;41(1):40–44. doi: 10.1016/0006-291x(70)90465-1. [DOI] [PubMed] [Google Scholar]
- Gutman M., Singer T. P., Beinert H. Relation of the respiratory chain-linked reduced nicotinamide--adenine dinucleotide dehydrogenase to energy-coupling site 1. Biochemistry. 1972 Feb 15;11(4):556–562. doi: 10.1021/bi00754a012. [DOI] [PubMed] [Google Scholar]
- Gutman M., Singer T. P. EPR studies on the iron-sulfur centers of DPNH dehydrogenase during the redox cycle of the enzyme. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1572–1578. doi: 10.1016/s0006-291x(71)80266-8. [DOI] [PubMed] [Google Scholar]
- HEYTLER P. G. uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry. 1963 Mar-Apr;2:357–361. doi: 10.1021/bi00902a031. [DOI] [PubMed] [Google Scholar]
- Haddock B. A., Garland P. B. Effect of sulphate-limited growth on mitochondrial electron transfer and energy conservation between reduced nicotinamide-adenine dinucleotide and the cytochromes in Torulopsis utilis. Biochem J. 1971 Aug;124(1):155–170. doi: 10.1042/bj1240155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLINGENBERG M., SLENCZKA W. [Pyridine nucleotide in liver mitochondria. An analysis of their redox relationships]. Biochem Z. 1959;331:486–517. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Liberman E. A., Skulachev V. P. Conversion of biomembrane-produced energy into electric form. IV. General discussion. Biochim Biophys Acta. 1970 Aug 4;216(1):30–42. doi: 10.1016/0005-2728(70)90156-8. [DOI] [PubMed] [Google Scholar]
- Light P. A., Ragan C. I., Clegg R. A., Garland P. B. Iron-limited growth of torulopsis utilis, and the reversible loss of mitochondrial energy conservation at site 1 and of sensitivity to rotenone and piericidin A. FEBS Lett. 1968 Jul;1(1):4–8. doi: 10.1016/0014-5793(68)80004-3. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers. Biochem J. 1967 Aug;104(2):588–600. doi: 10.1042/bj1040588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Respiration-driven proton translocation in rat liver mitochondria. Biochem J. 1967 Dec;105(3):1147–1162. doi: 10.1042/bj1051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orme-Johnson N. R., Orme-Johnson W. H., Hansen R. E., Beinert H., Hatefi Y. EPR detectable electron acceptors in submitochondrial particles from beef heart with special reference to the iron-sulfur components of DPNH-ubiquinone reductase. Biochem Biophys Res Commun. 1971 Jul 16;44(2):446–452. doi: 10.1016/0006-291x(71)90621-8. [DOI] [PubMed] [Google Scholar]
- Ragan C. I., Garland P. B. Spectroscopic studies of flavoproteins and non-haem iron proteins of submitochondrial particles of Torulopsis utilis modified by iron- and sulphate-limited growth in continuous culture. Biochem J. 1971 Aug;124(1):171–187. doi: 10.1042/bj1240171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruzicka F. J., Crane F. L. Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria. II. Duroquinone reductase activity. Biochim Biophys Acta. 1971 Mar 2;226(2):221–233. doi: 10.1016/0005-2728(71)90089-2. [DOI] [PubMed] [Google Scholar]
- Ruzicka F. J., Crane F. L. Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria. Biochim Biophys Acta. 1970 Nov 3;223(1):71–85. doi: 10.1016/0005-2728(70)90133-7. [DOI] [PubMed] [Google Scholar]
- Schatz G., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. VII. Oxidative phosphorylation in the diphosphopyridine nucleotide-cytochrome b segment of the respiratory chain: assay and properties in submitochondrial particles. J Biol Chem. 1966 Mar 25;241(6):1429–1438. [PubMed] [Google Scholar]
