Skip to main content
Frontiers in Cellular and Infection Microbiology logoLink to Frontiers in Cellular and Infection Microbiology
. 2025 Jan 7;13:1259764. doi: 10.3389/fcimb.2023.1259764

Pandemic one health clones of Escherichia coli and Klebsiella pneumoniae producing CTX-M-14, CTX-M-27, CTX-M-55 and CTX-M-65 ESβLs among companion animals in northern Ecuador

Fernando A Gonzales-Zubiate 1,*, José Humberto M Tambor 2,3, Juan Valencia-Bacca 4, María Fernanda Villota-Burbano 5, Adriana Cardenas-Arias 6,7, Fernanda Esposito 6,8, Quézia Moura 9, Bruna Fuga 6,7,8, Elder Sano 7, Jesus G M Pariona 8, Mishell Poleth Ortiz Jacome 1, Nilton Lincopan 6,7,8,*
PMCID: PMC11747428  PMID: 39840255

Abstract

From a One Health perspective, dogs and cats have begun to be recognized as important reservoirs for clinically significant multidrug-resistant bacterial pathogens. In this study, we investigated the occurrence and genomic features of ESβL producing Enterobacterales isolated from dogs, in the province of Imbabura, Ecuador. We identified four isolates expressing ESβLs from healthy and diseased animals. In this regard, two Escherichia coli strains producing CTX-M-55-like or CTX-M-65 ESβLs belonged to the international ST10 and ST162, whereas two Klebsiella pneumoniae producing CTX-M-14 or CTX-M-27 belonged to ST35 and ST661. Phylogenomic analysis clustered (95-105 SNP differences) CTX-M-55/ST10 E. coli from companion animal with food and human E. coli strains of ST10 isolated in 2016, in Australia and Cambodia, respectively; whereas CTX-M-27-positive K. pneumoniae ST661 was clustered (201-216 SNP differences) with human strains identified in Italy, in 2013 and 2017, respectively. In summary, we report the presence and genomic data of global human-associated clones of CTX-M-producing E. coli and K. pneumoniae in dogs, in Ecuador. The implementation of a national epidemiological surveillance program is necessary to establish future strategies to control the dissemination of antibiotic-resistant priority pathogens using a One Health approach.

Keywords: ESβL, gram-negative bacteria, Enterobacterales, antimicrobial resistance, One Health, veterinary medicine, genomic data

1. Introduction

Although Enterobacterales are natural inhabitants of the intestinal tract of mammals, some genus and species can cause infections of the respiratory and urinary systems, skin, ear, and soft tissue of human and non-human hosts (Zogg et al., 2018). In this regard, Escherichia coli and Klebsiella pneumoniae are leading causes of healthcare-associated infections worldwide (Pesesky et al., 2015), with carbapenem- and broad-spectrum cephalosporin-resistant lineages being categorized as critical priority pathogens by the World Health Organization (Tacconelli et al., 2018). Certainly, and even more worrying is the fact that extended-spectrum β-lactamase (ESβL)-producing strains are no longer restricted to hospital locations but also represents a serious problem involving pets, wildlife, and environmental and food safety (Lopes et al., 2021; Salgado-Caxito et al., 2021).

CTX-M enzymes have become the most prevalent type of ESβLs globally (Cantón & Coque, 2006; Pitout and Laupland, 2008). It is remarkable that the first report on the emergence of a CTX-M enzyme was in 1988, from a laboratory dog used in β-lactams research in Japan (Matsumoto et al., 1988), whereas E. coli producing bla CTX-M-1-type enzyme was first described in a healthy dog in Portugal. Since then, a significant occurrence of CTX-M-type ESβL-producing Enterobacterales has been documented in healthy and diseased dogs and cats from Asian, European and South American countries (Salgado-Caxito et al., 2021).

From a public health perspective, the rapid appearance of resistant bacterial populations among dogs and cats, and the close contact between household pets and people have favored the transmission of antibiotic-resistant bacteria from companion animals to humans (Damborg et al., 2016; Kawamura et al., 2017; Salgado-Caxito et al., 2021; Sellera et al., 2021). Transfer of resistant bacteria between humans and their dogs has been well documented (Albrechtova et al., 2012), as was illustrated by the identification of the same E. coli clone from a urinary tract infection in a dog, and from its household members (Johnson et al., 2008), although the direction of transfer is often difficult to prove (Pomba et al., 2017). In addition, the intensive use of antimicrobials in animals can be an important factor in the development of antimicrobial-resistant microorganisms (Caprioli et al., 2000; Umber and Bender, 2009; Marshall and Levy, 2011; Seiffert et al., 2013; Samanta et al., 2015). In this sense, companion animals might act as source of human contamination but may also be contaminated by human bacteria (Okubo et al., 2014; Fernandes et al., 2018; Melo et al., 2018). Furthermore, the role of companion animals as a source of AMR has, so far, been neglected (Ewers et al., 2012).

In South America, multidrug-resistant Enterobacterales are a major concern as the region exhibits some of the higher rates of antimicrobial resistance worldwide (Bonelli et al., 2014). The first report of ESβL in this region in companion animals was published in 2008 from E. coli isolates obtained from fecal samples of dogs and cats in Chile (Moreno et al., 2008). In that context, nosocomial infections caused by ESβL producing Enterobacterales have increased in the region more than others, since 2005 (Guzmán-Blanco et al., 2014). Several factors such living in crowded conditions, malnutrition, ineffective healthcare systems, deficient drug supply chain, massive use of antimicrobials in livestock and agriculture linked to lack of financial resources might be related to the greater prevalence of ESβLs in countries with lower economic resources (Villegas et al., 2008). In this study, we report the occurrence and genomic data of ESβL-producing E. coli and K. pneumoniae strains in dogs from Imbabura, Ecuador.

2. Materials and methods

2.1. Bacterial isolates and antibiotic susceptibility profile

During a microbiological and genomic surveillance study carried out in 2018, a total of 125 rectal swabs from dogs (64 healthy animals and 61 sick animals) were collected from the province of Imbabura in Ecuador, in order to monitor the presence of clinically significant drug-resistant Gram-negative bacteria in companion animals ( Supplementary Table 1 ). Samples were collected between April and June and between October and December 2018; from a veterinary clinic located in Ibarra that attend the following counties in Imbabura: Antonio Ante, Cotacachi, Ibarra, Otavalo, Pimampiro, and San Miguel de Urcuquí ( Figure S1 ).

The samples were cultured on blood and MacConkey agar plates supplemented with ceftriaxone (2 µg/mL) being incubated at 37°C overnight (Jacob et al., 2020). Bacteria were identified by conventional biochemical tests, whereas antimicrobial susceptibility testing was performed by the disk diffusion method on Mueller–Hinton agar plates (Clinical and Laboratory Standards Institute, 2023a; Clinical and Laboratory Standards Institute, 2023b). In addition, human and veterinary antibiotics including amoxicillin-clavulanic acid, ceftazidime, cefotaxime, ceftriaxone, ceftiofur, cefepime, cefoxitin, aztreonam, ertapenem, meropenem, imipenem, nalidixic acid, enrofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole, gentamicin, amikacin, and chloramphenicol, were tested ( Supplementary Table 2 ). Additionally, minimum inhibitory concentration (MIC) of cefotaxime was determined by using ETEST® strips (bioMérieux). The results were interpreted according to Clinical and Laboratory Standards Institute (Clinical and Laboratory Standards Institute, 2023a; Clinical and Laboratory Standards Institute, 2023b). ESβL production was screened by the double disk synergy test (DDST) (Jarlier et al., 1988).

2.2. Whole genome sequencing analysis

Whole genomic DNA was extracted (PureLinkTM; Invitrogen) and used to prepare a library that was sequenced using the NextSeq550 platform (2 x 75-bp paired-end) (Illumina), and the de novo assembly method was the Unicycler v.0.4.8 with Phred20 as minimum score quality of reads. The contigs generated for all genomes were submitted to NCBI using the WGS submission and automatic annotation was performed by PGAP (Prokaryotic Genome Annotation Pipeline v.3.2.); CDSs, RNAs and pseudo genes are shown in Tables 1 , 2 . The genomes were analyzed by MLST 2.0, ResFinder 4.1, and PlasmidFinder 2.1 tools from the Center for Genomic Epidemiology (CGE). Additionally, antibiotic resistance and virulence genes were predicted using the Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB), respectively, whereas genes related with mercury, arsenic and disinfectant resistance (quaternary ammonium compounds) were screened using an in-house and the BIGSdb database. For phylotyping E. coli, the in silico Clermont phylotyper tool was used (https://ezclermont.hutton.ac.uk/).

Table 1.

Genomic characteristics of lineages of ESBL-producing Escherichia coli strains recovered from rectal swabs collected in dogs in Ecuador.

Characteristics ECU3_SQ178 EE12_SQ154
Source Dog rectal swab Dog rectal swab
Year of isolation 2018 2018
Genome size (bp) 4,847,206 4,893,054
G + C content (%) 50,7 50,7
rRNA 2 2
tRNAs 45 39
ncRNAs 7 9
N° total of genes 4,784 4,727
No. of CDSa 4,595 4,549
ST 10 162
Clermont phylotype A B1
Resistome
 β-Lactams bla CTX-M-55-like bla CTX-M-65
 Aminoglycosides aph(3’’)-Ib, aph(6)-Id aadA1, aadA2b
 Phenicols florR clmA1
 Sulfonamides sul2 sul3
 Tetracycline tetA
 Trimethoprim dfrA1
 Fosfomycin fosA3 fosA3
 Quinolones gyrA (D87N), parC (S80I), marA marA
 Heavy metal
  Arsenic arsB, arsC, arsR arsB, arsR
  Mercury - merR
  Tellurium tehA, tehB tehA, tehB
 Biocides and
 disinfectants
mdtEFKN, emrDK, acrAEF, tolC mdtEFK, emrDK, mvrC, acrAEF, tolC, qacF
 Herbicides (glyphosate) phnCDFGHIJKLMNOP phnJ
Virulome
 Common pilus yagZ/ecpA, yagY/ecpB, yagX/ecpC, yagW/ecpD yagZ/ecpA, yagY/ecpB, yagX/ecpC, yagW/ecpD
 Fimbrial protein - fimBCDEGI
 Enterobactin siderophore entB -
 Salmochelin siderophore iroCDEN iroCDEN
 Type II secretion system
 (T2SS)
gspM gspK
Plasmids IncFIA, IncFIB, IncFII IncFIB
GenBank accession number JACWHI000000000.1 JACWHK000000000.1

Table 2.

Genomic characteristics of lineages of ESBL-producing Klebsiella pneumoniae strains recovered from rectal swabs collected in dogs in Ecuador.

Characteristics ECUD12_SQ166 EE25K_SQ190
Source Dog rectal swab Dog rectal swab
Year of isolation 2018 2018
Genome size (bp) 5,342,763 5,560,571
G + C content (%) 57,4 57,2
rRNA 2 2
tRNAs 39 46
ncRNAs 7 8
N° total of genes 5,283 5,412
No. of CDSa 5,142 5,270
ST 661 35
K-locus/O-locus KL28/O2v1 -/O1v1
wzi/ICEKp/ybt 84/-/- 37/ICEKp3/ybt 9
Resistome
 β-Lactams bla CTX-M-27, bla SHV-27 bla CTX-M-14, bla LAP-2, bla SHV-33
 Aminoglycosides aac(3)IV, aac(6′)-Ib-cr, aadA1, aadA16, aadA2b, aph(4)-la
 Phenicols clmA1
 Sulfonamides sul1, sul3 sul1
 Tetracycline tetD
 Trimethoprim dfrA27 dfrA1
 Fosfomycin fosA6 fosA6
 Quinolones qnrB52, aac(6’)-Ib-cr, oqxA, oqxB qnrS1, oqxA, oqxB
 Macrolides mphA
 Rifampicin arr-3
 Heavy metal
  Arsenic arsB, arsC, arsD, arsR
  Silver silABCEFRS silABCEFRS
 Biocides and
 disinfectants
qacF smvR
Virulome
 Yersiniabactin
 siderophore
ybtSXQPAUTE, irp1, irp2, fyuA
Plasmids IncFIB IncFIB
GenBank accession number JACWHJ000000000.1 JACWHL000000000.1

2.3. Phylogenetic analysis

A search for genomic data of isolates for each sequence type identified was performed, in order to recruit genomes for phylogenetic comparison. Assemblies with no metadata for country, year and source of isolation were ignored. For E. coli strains, genomes were downloaded from Enterobase (3,572 assemblies of E. coli ST10 and 442 assemblies of ST162), while for K. pneumoniae strains, a search for each ST were performed on bacWGSTdb (http://bacdb.cn/BacWGSTdb/), and genomes were downloaded from NCBI GenBank (i.e., 60 assemblies of K. pneumoniae ST35 and 19 assemblies of ST661). With exception of ST661, which had only 19 assemblies downloaded, 30 genomes with highest average nucleotide identity (ANI) of each ST comparing with this work’s assemblies were performed using FastANIv1.32 (https://github.com/ParBLiSS/FastANI/). ANI values between downloaded and query genomes were ≥99.7625% for E. coli ST10, ≥99.7807% for E. coli ST162, ≥99.7631% for K. pneumoniae ST35 and ≥99.575% for K. pneumoniae ST661. CSI Phylogeny (https://cge.food.dtu.dk/services/CSIPhylogeny/) was used with default settings to generate approximate maximum-likelihood SNP-based trees. Chromosome sequences of SCU-118 (NZ_CP051716.1) and LD91-1 (NZ_CP042585.1) E. coli strains, and RJY9645 (NZ_CP041353.1) and F13 (NZ_CP026162.1) of K. pneumoniae strains were used as reference for E. coli ST10 and ST162, and K. pneumoniae ST35 and ST661, respectively. ABRicatev1.0.1 (https://github.com/tseemann/abricate) was used with ResFinder and PlasmidFinder databases to screen antimicrobial resistance genes and plasmids on each recruited genome. Identity and coverage limits were set to 98% and 100%, respectively. iTOLv6 (https://itol.embl.de/) was used to annotate the tree with data from Enterobase, bacWGSTdb and ABRicate.

3. Results and discussion

Forty-tree cephalosporin-resistant Gram-negative bacteria were isolated from 23 healthy dogs and 16 sick dogs ( Supplementary Tables 1, 2 ). From the latter, eight dogs presented with gastrointestinal complications, four with metabolic syndrome, two with dermatological disease, one with respiratory problems, and another with cerebrovascular accident. Based on confirmation of ESβL phenotype, four bacterial isolates exhibiting a MDR profile (Magiorakos et al., 2012) were sequenced: i) E. coli strain ECU3_SQ178 (GenBank accession number: JACWHI000000000.1) isolated from a 6-month-old healthy female dog mixed breed, with no previous treatments reported. This strain presented resistance to ceftazidime, cefotaxime (MIC > 32 µg/mL), ceftriaxone, cefepime, aztreonam, nalidixic-acid, enrofloxacin, ciprofloxacin, and chloramphenicol, being susceptible to amoxicillin-clavulanic acid, cefoxitin, ertapenem, meropenem, imipenem, gentamicin, amikacin, trimethoprim-sulfamethoxazole ( Supplementary Table 2 ). In this regard, WGS analysis predicted the presence of genes associated with resistance to β-lactams (bla CTX-M-55-like), phenicols (floR), tetracyclines (tetA), sulphonamides (sul2), aminoglycosides [aph(3”)-Ib, aph(6)-Id], fosfomycin (fosA3), and quinolones (gyrA-D87N and parC-S80I point mutations, marA). On the other hand, genes conferring tolerance to heavy metals [arsenic (arsBCR) and tellurium (tehAB)], herbicide [glyphosate (phnCDFGHIJKLMNOP)], biocides and disinfectants (mdtEFKN, emrDK, acrAEF and tolC) were also predicted ( Table 1 ); ii) E. coli strain EE12_SQ154 (GenBank accession number: JACWHK000000000.1) isolated from a 4-years-old female Yorkshire terrier dog with a history of physical decline, cerebrovascular accident and shock. It was not reported by the private veterinary clinic the treatment received prior to the sample collection. Antimicrobial susceptibility testing revealed resistance to ceftazidime, cefotaxime (MIC > 32 µg/mL), ceftriaxone, cefepime, aztreonam, nalidixic-acid, enrofloxacin, ciprofloxacin, trimethoprim-sulfamethoxazole, chloramphenicol, and gentamicin, and susceptibility to amoxicillin-clavulanic acid, cefoxitin, ertapenem, meropenem, imipenem and amikacin ( Supplementary Table 2 ). The antimicrobial resistome included genes conferring resistance to β-lactams (bla CTX-M-65), aminoglycosides (aadA1, aadA2b), fosfomycin (fosA3), phenicol (cmlA1), sulphonamides (sul3), trimethoprim (dfrA1), quinolones (marA), heavy metals [arsenic (arsBR), tellurium (tehAB) and mercury (merR)], herbicide [glyphosate (phnJ)], biocides and disinfectants (mdtEFK, emrDK, acrAEF, tolC, qacF and mvrC) ( Table 1 ); iii) K. pneumoniae strain ECU12_SQ166 (GenBank accession number: JACWHJ000000000.1), isolated from a 12-year-old male English Shepherd dog admitted to a private veterinary clinic with signs of diarrhea, melena, vomiting, septicemia, and chronic kidney failure leading to death. Based on the anamnesis and initial physical examination, fluid therapy was established, as a stabilization measure (lactated ringer solution), and a not specified β-lactam antibiotic was administered. The strain exhibited resistance to amoxicillin-clavulanic acid, ceftazidime, cefotaxime (MIC > 32 µg/mL), ceftriaxone, cefepime, aztreonam, ceftiofur, trimethoprim-sulfamethoxazole, nalidixic-acid, enrofloxacin, ciprofloxacin, and gentamicin, being susceptible to cefoxitin, ertapenem, meropenem, imipenem, and amikacin ( Supplementary Table 2 ). The resistome analysis predicted resistance genes to β-lactams (bla CTX-M-27, bla SHV-27), fosfomycin (fosA6), trimethoprim (dfrA27), rifampicin (arr-3), sulfonamides (sul1, sul3), aminoglycosides [aac(3)IV, aac(6′)-Ib-cr, aadA1, aadA16, aadA2b, aph(4)-la], macrolides (mphA), quinolones [aac(6’)-Ib-cr, oqxA, oqxB, qnrB52], phenicols (cmlA), tetracyclines (tetD), silver (silABCEFRS) and ammonium quaternary compounds (qacF) ( Table 2 ); (iv) K. pneumoniae strain EE25K_SQ190 (GenBank accession number: JACWHL000000000.1) isolated from an 8-year-old male German shepherd dog, presenting with discomfort, anorexia and foreign body gingivitis. After clinical examination, the foreign body was removed and a combination of amoxicillin/clavulanic acid plus a non-steroidal anti-inflammatory was prescribed. Antimicrobial susceptibility testing revealed resistance to cefotaxime (MIC > 32 µg/mL), ceftriaxone, cefepime, nalidixic-acid, enrofloxacin, ciprofloxacin, and trimethoprim-sulfamethoxazole. This strain showed to be susceptible to amoxicillin-clavulanic acid, ceftazidime, cefoxitin, aztreonam, ertapenem, meropenem, imipenem, amikacin and gentamicin ( Supplementary Table 2 ). Resistome encompass genes resistant to β-lactams (bla CTX-M-14, bla SHV-33, bla LAP2), fosfomycin (fosA6), trimethoprim (dfrA1), quinolones (oqxA, oqxB, qnrS1), and sulphonamides (sul1), silver (silABCEFRS), arsenic (arsBCDR) and chlorhexidine (smvR) ( Table 2 ).

While CTX-M-55- and CTX-M-65-positive E. coli strains belonged to ST10 and ST162, K. pneumoniae producing CTX-M-27 and CTX-M-14 ESβLs belonged to ST661 and ST35, respectively. E. coli ST10 and ST162 have been previously associated with human infections (Coelho et al., 2011; Chen et al., 2014), being further identified in hospital sewage (Zhao et al., 2017), bovines (Umpiérrez et al., 2017), birds (Fuentes-Castillo et al., 2020), and dogs (Yasugi et al., 2021). The bla CTX-M-55 gene has been widely identified globally in E. coli isolates from various animal species (Kiratisin et al., 2007; Zhang et al., 2014; Birgy et al., 2018; Lupo et al., 2018). The remarkable prevalence of this gene, accompanied by a high propensity for horizontal gene transfer has facilitated its rapid and wide spread (Yang et al., 2023). In Ecuador bla CTX-M-55 has been the most prevalent allele of the bla CTX-M family in E. coli from poultry settings, followed by bla CTX-M-65 and bla CTX-M-2 (Ortega-Paredes et al., 2020a). On the other hand, according to Enterobase (https://enterobase.warwick.ac.uk/), ST10 has been identified in dogs from Germany, United States of America (USA), United Kingdom, South Korea, Canada and New Zealand, whereas in Ecuador ST10 has been identified in humans, wild animals, and environmental samples; confirming the One Health importance of this global lineage in this country. In fact, phylogenomic analysis showed that strain ECU3_SQ178 (CTX-M-55/ST10) clustered (95-105 SNP differences) with food and human E. coli strains of ST10 isolated in 2016, in Australia and Cambodia, respectively, whereas CTX-M-65-positive E. coli ST162 (strain EE12_SQ154) showed ubiquity, being clustered (207-265 SNP differences) with other four drug-resistant E. coli strains of ST162 isolated from livestock (USA, 2016), poultry (USA, 2020), human (Australia, 2014) and companion animal (USA, 2007) ( Figure 1 , Supplementary Table 3 ). Moreover, data retrieved from Enterobase confirm occurrence of this E. coli clone in companion animals from Germany, USA, and Canada. Interestingly, this is the first report of E. coli ST162 found in companion animal, in South America.

Figure 1.

Figure 1

Phylogenetic trees of E. coli strains. SNP-based phylogenetic trees of E. coli ST10 and ST162, and heatmap showing presence/absence of antibiotic resistance genes for 10 antibiotics, and their source of isolation. Details on resistome, plasmidome and origin are showed for clusters formed with CTX-M-55-producing E. coli ECU3_SQ178 and CTX-M-65 E. coli EE12_SQ154 strains, isolated from dogs, in Ecuador.

In the case of K. pneumoniae ST661 and ST35 clones, they have been previously isolated from nosocomial pneumonia in humans (Zhao et al., 2019), rectal swabs from pigs and fecal human samples (Leangapichart et al., 2021). Moreover, ST661 has been recovered from aquatic environments (Furlan et al., 2020), hospitalized patients (Piazza et al., 2019), being recently reported as responsible for outbreaks in Europe (Martin et al., 2017); whereas ST35 has been identified among ESβL-producing K. pneumoniae strains in hospital settings (Marcade et al., 2013; Frenk et al., 2020), being lately recognized as a multidrug-resistant clone with worldwide distribution (Shen et al., 2020).

For CTX-M-27-positive K. pneumoniae ST661 (ECU12_SQ166), phylogenomic analysis revealed relationship (201-216 SNP differences) with human strains identified in Italy, in 2013 and 2017, respectively ( Figure 2 , Supplementary Table 3 ). Strikingly, all the three isolates within the clade carried an IncFIB-type plasmid. Moreover, ECU12_SQ166 and the human strain isolated in 2017 exhibited an identical MDR profile, sharing bla SHV-27, sul1 and mph(A) resistance genes. In brief, K. pneumoniae ST661 is other global clone identified in Italy, China, England, Brazil, Tunisia, Thailand, Uruguay, Mexico and Taiwan (Yan et al., 2015; Ku et al., 2017; Martin et al., 2017; Patil et al., 2019; Piazza et al., 2019; Sghaier et al., 2019; Furlan et al., 2020; Hassen et al., 2020; Ludden et al., 2020; Leangapichart et al., 2021; Papa-Ezdra et al., 2021; Toledano-Tableros et al., 2021).

Figure 2.

Figure 2

Phylogenetic trees of K. pneumoniae strains. SNP-based phylogenetic trees of K. pneumoniae ST35 and ST661, and heatmap showing presence/absence of antibiotic resistance genes for 10 antibiotics, and their source of isolation. Details on resistome, plasmidome and origin are showed for clusters formed with CTX-M-14-producing K. pneumoniae EE25K_SQ190 and CTX-M-27-producing K. pneumoniae ECU12_SQ166 strains, isolated from dogs in Ecuador.

In companion animals, ESβL production among Klebsiella isolates has been associated with CTX-M-14 and CTX-M-15 variants (Harada et al., 2016). In this study, CTX-M-14-positive K. pneumoniae EE25K_SQ190 belonged to ST35. Although this clone has been previously identified in China, Romania, Yemen, Israel, France, Spain and Thailand (Marcade et al., 2013; Cubero et al., 2016; Alsharapy et al., 2020; Frenk et al., 2020; Kong et al., 2020; Shen et al., 2020; Surleac et al., 2020; Zhong et al., 2020; Leangapichart et al., 2021), phylogenomic analysis clustered (353-354 SNP differences) EE25K_SQ190 with a human clone identified in Turkey in 2013 and 2014 ( Figure 2 , Supplementary Table 3 ).

Although, in Ecuador, occurrence of E. coli producing ESβL has been reported in pets, chicken, humans, food, vegetables, broiler farms, and river water samples, in Quito (Vinueza-Burgos et al., 2016; Chiluisa-Guacho et al., 2018; Ortega-Paredes et al., 2018; Ortega-Paredes et al., 2019; Vinueza-Burgos et al., 2019; Zurita et al., 2019; Ortega-Paredes et al., 2020a; Ortega-Paredes et al., 2020b; Zurita et al., 2020), and in other cities such as Guayaquil (Soria Segarra et al., 2018), Esmeraldas (Hedman et al., 2019), Loja (Delgado et al., 2016), and Cuenca (Zurita et al., 2013); as well as in the provinces of Tungurahua and Cotopaxi (Sánchez-Salazar et al., 2020), genomic data are scarce. Specifically, while CTX-M-55 and CTX-M-65-producing E. coli have been previously reported in dogs in central Ecuador, and in Quito (Ortega-Paredes et al., 2019; Albán et al., 2020; Salinas et al., 2021), CTX-M-producing K. pneumoniae have been isolated from human hosts in Cuenca (Nordberg et al., 2013), Quito, Guayaquil, and Azogues (Zurita et al., 2013), so far.

In summary, we report genomic data of global One Health-associated clones of CTX-M-55 and CTX-M-65-producing E. coli, and CTX-M-14 and CTX-M-15-producing K. pneumoniae in dogs from the province of Imbabura, in Ecuador. The implementation of a national epidemiological surveillance program is necessary to establish future strategies to control the dissemination of antibiotic-resistant priority pathogens using a One Health approach.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Ethics statement

The animal studies were approved by MSc. Elena Dorothea Balarezo Cisneros President of the Ethics Committee for Research Processes Yachay Tech University. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent was obtained from the owners for the participation of their animals in this study.

Author contributions

FAG-Z: Conceptualization, Formal analysis, Project administration, Supervision, Writing – original draft, Writing – review & editing. JT: Formal analysis, Writing – review & editing. JV-B: Formal analysis, Methodology, Writing – original draft, Writing – review & editing. MV-B: Investigation, Methodology, Writing – review & editing. AC-A: Methodology, Writing – review & editing. FE: Formal analysis, Methodology, Software, Writing – review & editing. QM: Formal analysis, Methodology, Writing – review & editing. BF: Methodology, Writing – review & editing. ES: Formal analysis, Methodology, Software, Writing – review & editing. JGMP: Formal analysis, Methodology, Validation, Writing – review & editing. MJ: Investigation, Writing – review & editing. NL: Conceptualization, resources, Formal analysis, Writing – original draft, Writing – review & editing.

Acknowledgments

We are grateful to FAPESP and CNPq. We also thank Cefar Diagnóstica Ltda. (São Paulo, Brazil) and CEFAP-GENIAL facility for kindly supplying antibiotic discs for susceptibility testing and Illumina sequencing, respectively.

Funding Statement

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2020/08224-9 and 2019/15778-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 422984/2021-3 and 314336/2021-4). NL is a research fellow of CNPq (314336/2021-4). FE was a research fellow of FAPESP (2019/15778-4).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcimb.2023.1259764/full#supplementary-material

DataSheet_1.pdf (559.5KB, pdf)
Image_1.tif (2.4MB, tif)
Table_1.xlsx (36.3KB, xlsx)
Table_2.xlsx (15KB, xlsx)
Table_3.xlsx (30.6KB, xlsx)

References

  1. Albán M. V., Núñez E. J., Zurita J., Villacís J. E., Tamayo R., Sevillano G., et al. (2020). Canines with different pathologies as carriers of diverse lineages of Escherichia coli harbouring mcr-1 and clinically relevant β-lactamases in central Ecuador. J. Glob. Antimicrob. Resist. 22, 182–183. doi:  10.1016/j.jgar.2020.05.017 [DOI] [PubMed] [Google Scholar]
  2. Albrechtova K., Dolejska M., Cizek A., Tausova D., Klimes J., Bebora L., et al. (2012). Dogs of nomadic pastoralists in Northern Kenya are reservoirs of plasmid-mediated cephalosporin-and quinolone-resistant Escherichia coli, including pandemic clone B2-O25-ST131. Antimicrob. Agents Chemother. 56, 4013–4017. doi:  10.1128/AAC.05859-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alsharapy S. A., Gharout-Sait A., Muggeo A., Guillard T., Cholley P., Brasme L., et al. (2020). Characterization of carbapenem-resistant Enterobacteriaceae clinical isolates in Al Thawra University Hospital, Sana’a, Yemen. Microb. Drug Resist. 26, 211–217. doi:  10.1089/mdr.2018.0443 [DOI] [PubMed] [Google Scholar]
  4. Birgy A., Madhi F., Hogan J., Doit C., Gaschignard J., Caseris M., et al. (2018). CTX-M-55-, MCR-1-, and FosA-producing multidrug-resistant Escherichia coli infection in a child in France. Antimicrob. Agents Chemother. 62, e00127–e00118. doi:  10.1128/aac.00127-18 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonelli R. R., Moreira B. M., Picão R. C. (2014). Antimicrobial resistance among Enterobacteriaceae in South America: history, current dissemination status and associated socioeconomic factors. Drug Resist. Updat. 17, 24–36. doi:  10.1016/j.drup.2014.02.001 [DOI] [PubMed] [Google Scholar]
  6. Cantón R., Coque T. M. (2006). The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 9, 466–475. doi:  10.1016/j.mib.2006.08.011 [DOI] [PubMed] [Google Scholar]
  7. Caprioli A., Busani L., Martel J. L., Helmuth R. (2000). Monitoring of antibiotic resistance in bacteria of animal origin: Epidemiological and microbiological methodologies. Int. J. Antimicrob. Agents. 14, 295–301. doi:  10.1016/S0924-8579(00)00140-0 [DOI] [PubMed] [Google Scholar]
  8. Chen Y., Chen X., Zheng S., Yu F., Kong H., Yang Q., et al. (2014). Serotypes, genotypes and antimicrobial resistance patterns of human diarrhoeagenic Escherichia coli isolates circulating in southeastern China. Clin. Microbiol. Infect. 20, 52–58. doi:  10.1111/1469-0691.12188 [DOI] [PubMed] [Google Scholar]
  9. Chiluisa-Guacho C., Escobar-Perez J., Dutra-Asensi M. (2018). First detection of the CTX-M-15 producing Escherichia coli O25-ST131 pandemic clone in Ecuador. Pathogens. 7, 42. doi:  10.3390/pathogens7020042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. CLSI (2023. a). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals - 6th edition: VET01S (Clinical and Laboratory Standards Institute; ). [Google Scholar]
  11. CLSI (2023. b). Performance standards for antimicrobial susceptibility testing. 33rd (CLSI supplement M100. Clinical and Laboratory Standards Institute; ). [Google Scholar]
  12. Coelho A., Mora A., Mamani R., López C., González-López J. J., Larrosa M. N., et al. (2011). Spread of Escherichia coli O25b:H4-B2-ST131 producing CTX-M-15 and SHV-12 with high virulence gene content in Barcelona (Spain). J. Antimicrob. Chemother. 66, 517–526. doi:  10.1093/jac/dkq491 [DOI] [PubMed] [Google Scholar]
  13. Cubero M., Grau I., Tubau F., Pallarés R., Dominguez M. A., Liñares J., et al. (2016). Hypervirulent Klebsiella pneumoniae clones causing bacteraemia in adults in a teaching hospital in Barcelona, Spain, (2007-2013). Clin. Microbiol. Infect. 22, 154–160. doi:  10.1016/j.cmi.2015.09.025 [DOI] [PubMed] [Google Scholar]
  14. Damborg P., Broens E. M., Chomel B. B., Guenther S., Pasmans F., Wagenaar J. A., et al. (2016). Bacterial zoonoses transmitted by household pets: state-of-the-art and future perspectives for targeted research and policy actions. J. Comp. Pathol. 155, S27–S40. doi:  10.1016/j.jcpa.2015.03.004 [DOI] [PubMed] [Google Scholar]
  15. Delgado D. Y. C., Barrigas Z. P. T., Astutillo S. G. O., Jaramillo A. P. A., Ausili A. (2016). Detection and molecular characterization of β-lactamase genes in clinical isolates of Gram-negative bacteria in Southern Ecuador. Braz. J. Infect. Dis. 20, 627–630. doi:  10.1016/j.bjid.2016.07.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ewers C., Bethe A., Semmler T., Guenther S., Wieler L. H. (2012). Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 18, 646–655. doi:  10.1111/j.1469-0691.2012.03850.x [DOI] [PubMed] [Google Scholar]
  17. Fernandes M. R., Sellera F. P., Moura Q., Carvalho M. P. N., Rosato P. N., Cerdeira L., et al. (2018). Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa, Brazil. Emerg. Infect. Dis. 24, 1160–1162. doi:  10.3201/eid2406.180335 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frenk S., Rakovitsky N., Temkin E., Schechner V., Cohen R., Kloyzner B. S., et al. (2020). Investigation of outbreaks of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in three neonatal intensive care units using whole genome sequencing. Antibiotics. 9, 1–10. doi:  10.3390/antibiotics9100705 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fuentes-Castillo D., Esposito F., Cardoso B., Dalazen G., Moura Q., Fuga B., et al. (2020). Genomic data reveal international lineages of critical priority Escherichia coli harbouring wide resistome in Andean condors (Vulturgryphus Linnaeus 1978). Mol. Ecol. 29, 1919–1935. doi:  10.1111/mec.15455 [DOI] [PubMed] [Google Scholar]
  20. Furlan J. P. R., Savazzi E. A., Stehling E. G. (2020). Genomic insights into multidrug-resistant and hypervirulent Klebsiella pneumoniae co-harboring metal resistance genes in aquatic environments. Ecotox. Environ. Saf. 201, 110782. doi:  10.1016/j.ecoenv.2020.110782 [DOI] [PubMed] [Google Scholar]
  21. Guzmán-Blanco M., Labarca J. A., Villegas M. V., Gotuzzo E. (2014). Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz. J. Infect. Dis. 18, 421–433. doi:  10.1016/j.bjid.2013.10.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Harada K., Shimizu T., Mukai Y., Kuwajima K., Sato T., Usui M., et al. (2016). Phenotypic and molecular characterization of antimicrobial resistance in Klebsiella spp. isolates from companion animals in Japan: clonal dissemination of multidrug-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae . Front. Microbiol. 7. doi:  10.3389/fmicb.2016.01021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hassen B., Abbassi M. S., Benlabidi S., Ruiz-Ripa L., Mama O. M., Ibrahim C., et al. (2020). Genetic characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from wastewater and river water in Tunisia: predominance of CTX-M-15 and high genetic diversity. Environ. Sci. pollut. Res. 27, 44368–44377. doi:  10.1007/s11356-020-10326-w [DOI] [PubMed] [Google Scholar]
  24. Hedman H. D., Eisenberg J. N. S., Vasco K. A., Blair C. N., Trueba G., Berrocal V. J., et al. (2019). High prevalence of extended-spectrum beta-lactamase CTX-M-producing Escherichia coli in small-scale poultry farming in rural Ecuador. Am. J. Trop. Med. Hyg. 100, 374–376. doi:  10.4269/ajtmh.18-0173 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jacob M. E., Keelara S., Aidara-Kane A., Matheu Alvarez J. R., Fedorka-Cray P. J. (2020). Optimizing a screening protocol for potential extended-spectrum β-lactamase Escherichia coli on MacConkey agar for use in a global surveillance program. J. Clin. Microbiol. 58, e01039–e01019. doi:  10.1128/JCM.01039-19 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jarlier V., Nicolas M. H., Fournier G., Philippon A. (1988). Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Clin. Infect. Dis. 10, 867–878. doi:  10.1093/clinids/10.4.867 [DOI] [PubMed] [Google Scholar]
  27. Johnson J. R., Clabots C., Kuskowski M. A. (2008). Multiple-host sharing, long-term persistence, and virulence of Escherichia coli clones from human and animal household members. J. Clin. Microbiol. 46, 4078–4082. doi:  10.1128/JCM.00980-08 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kawamura K., Sugawara T., Matsuo N., Hayashi K., Norizuki C., Tamai K., et al. (2017). Spread of CTX-type extended-spectrum β-lactamase-producing Escherichia coli isolates of epidemic clone B2-O25-ST131 among dogs and cats in Japan. Microb. Drug Resist. 23, 1059–1066. doi:  10.1089/mdr.2016.0246 [DOI] [PubMed] [Google Scholar]
  29. Kiratisin P., Apisarnthanarak A., Saifon P., Laesripa C., Kitphati R., Mundy L. M. (2007). The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum β-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. Diagn. Microbiol. Infect. Dis. 58, 349–355. doi:  10.1016/j.diagmicrobio.2007.02.005 [DOI] [PubMed] [Google Scholar]
  30. Kong Z., Liu X., Li C., Cheng S., Xu F., Gu B. (2020). Clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae among pediatric patients in Jiangsu province, China. Infect. Drug Resist. 13, 4627–4635. doi:  10.2147/IDR.S293206 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ku Y. H., Chuang Y. C., Chen C. C., Lee M. F., Yang Y. C., Tang H. J., et al. (2017). Klebsiella pneumoniae isolates from meningitis: epidemiology, virulence and antibiotic resistance. Sci. Rep. 7, 1–10. doi:  10.1038/s41598-017-06878-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Leangapichart T., Lunha K., Jiwakanon J., Angkititrakul S., Järhult J. D., Magnusson U., et al. (2021). Characterization of Klebsiella pneumoniae complex isolates from pigs and humans in farms in Thailand: population genomic structure, antibiotic resistance and virulence genes. J. Antimicrob. Chemother. 76, 2012–2016. doi:  10.1093/jac/dkab118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lopes R., Fuentes-Castillo D., Fontana H., Rodrigues L., Dantas K., Cerdeira L., et al. (2021). Endophytic lifestyle of global clones of extended-spectrum β-lactamase-producing priority pathogens in fresh vegetables: a trojan horse strategy favoring human colonization? MSystems. 6, e01125–e01120. doi:  10.1128/msystems.01125-20 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ludden C., Moradigaravand D., Jamrozy D., Gouliouris T., Blane B., Naydenova P., et al. (2020). A one health study of the genetic relatedness of Klebsiella pneumoniae and their mobile elements in the east of England. Clin. Infect. Dis. 70, 219–226. doi:  10.1093/cid/ciz174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lupo A., Saras E., Madec J. Y., Haenni M. (2018). Emergence of bla CTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. J. Antimicrob. Chemother. 73, 867–872. doi:  10.1093/jac/dkx489 [DOI] [PubMed] [Google Scholar]
  36. Magiorakos A. P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281. doi:  10.1111/j.1469-0691.2011.03570.x [DOI] [PubMed] [Google Scholar]
  37. Marcade G., Brisse S., Bialek S., Marcon E., Leflon-Guibout V., Passet V., et al. (2013). The emergence of multidrug-resistant Klebsiella pneumoniae of international clones ST13, ST16, ST35, ST48 and ST101 in a teaching hospital in the Paris region. Epidemiol. Infect. 141, 1705–1712. doi:  10.1017/S0950268812002099 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Marshall B. M., Levy S. B. (2011). Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718–733. doi:  10.1128/CMR.00002-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Martin J., Phan H. T. T., Findlay J., Stoesser N., Pankhurst L., Navickaite I., et al. (2017). Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long- and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission. J. Antimicrob. Chemother. 72, 3025–3034. doi:  10.1093/jac/dkx264 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Matsumoto Y., Ikeda F., Kamimura T., Yokota Y., Mine Y. (1988). Novel plasmid-mediated β-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob. Agents Chemother. 32, 1243–1246. doi:  10.1128/AAC.32.8.1243 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Melo L. C., Oresco C., Leigue L., Netto H. M., Melville P. A., Benites N. R., et al. (2018). Prevalence and molecular features of ESBL/pAmpC-producing Enterobacteriaceae in healthy and diseased companion animals in Brazil. Vet. Microbiol. 221, 59–66. doi:  10.1016/j.vetmic.2018.05.017 [DOI] [PubMed] [Google Scholar]
  42. Moreno A., Bello H., Guggiana D., Domínguez M., González G. (2008). Extended-spectrum β-lactamases belonging to CTX-M group produced by Escherichia coli strains isolated from companion animals treated with enrofloxacin. Vet. Microbiol. 129, 203–208. doi:  10.1016/j.vetmic.2007.11.011 [DOI] [PubMed] [Google Scholar]
  43. Nordberg V., Quizhpe Peralta A., Galindo T., Turlej-Rogacka A., Iversen A., Giske C. G., et al. (2013). High Proportion of intestinal colonization with successful epidemic clones of ESBL-producing Enterobacteriaceae in a neonatal intensive care unit in Ecuador. PloS One 8, e76597. doi:  10.1371/journal.pone.0076597 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Okubo T., Sato T., Yokota S. I., Usui M., Tamura Y. (2014). Comparison of broad-spectrum cephalosporin-resistant Escherichia coli isolated from dogs and humans in Hokkaido, Japan. J. Infect. Chemother. 20, 243–249. doi:  10.1016/j.jiac.2013.12.003 [DOI] [PubMed] [Google Scholar]
  45. Ortega-Paredes D., Barba P., Mena-López S., Espinel N., Crespo V., Zurita J. (2020. b). High quantities of multidrug-resistant Escherichia coli are present in the Machángara urban river in Quito, Ecuador. J. Water Health 18, 67–76. doi:  10.2166/wh.2019.195 [DOI] [PubMed] [Google Scholar]
  46. Ortega-Paredes D., Barba P., Mena-López S., Espinel N., Zurita J. (2018). Escherichia coli hyperepidemic clone ST410-A harboring bla CTX-M-15 isolated from fresh vegetables in a municipal market in Quito-Ecuador. Int. J. Food Microbiol. 280, 41–45. doi:  10.1016/j.ijfoodmicro.2018.04.037 [DOI] [PubMed] [Google Scholar]
  47. Ortega-Paredes D., de Janon S., Villavicencio F., Ruales K. J., de la Torre K., Villacís J. E., et al. (2020. a). Broiler farms and carcasses are an important reservoir of multi-drug resistant Escherichia coli in Ecuador. Front. Vet. Sci. 7. doi:  10.3389/fvets.2020.547843 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ortega-Paredes D., Haro M., Leoro-Garzón P., Barba P., Loaiza K., Mora F., et al. (2019). Multidrug-resistant Escherichia coli isolated from canine faeces in a public park in Quito, Ecuador. J. Glob. Antimicrob. Resist. 18, 263–268. doi:  10.1016/j.jgar.2019.04.002 [DOI] [PubMed] [Google Scholar]
  49. Papa-Ezdra R., Caiata L., Palacio R., Outeda M., Cabezas L., Bálsamo A., et al. (2021). Prevalence and molecular characterisation of carbapenemase-producing Enterobacterales in an outbreak-free setting in a single hospital in Uruguay. J. Glob. Antimicrob. Resist. 24, 58–62. doi:  10.1016/j.jgar.2020.11.006 [DOI] [PubMed] [Google Scholar]
  50. Patil S., Chen X., Wen F. (2019). Exploring the phenotype and genotype of multi-drug resistant Klebsiella pneumoniae harbouring bla CTX-M group extended-spectrum β-lactamases recovered from paediatric clinical cases in Shenzhen, China. Ann. Clin. Microbiol. Antimicrob. 18, 1–6. doi:  10.1186/s12941-019-0331-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Pesesky M. W., Hussain T., Wallace M., Wang B., Andleeb S., Burnham C. D., et al. (2015). KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. Emerg. Infect. Dis. 21, 1034–1037. doi:  10.3201/eid2106.141504 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Piazza A., Comandatore F., Romeri F., Brilli M., Dichirico B., Ridolfo A., et al. (2019). Identification of bla VIM-1 gene in ST307 and ST661 Klebsiella pneumoniae clones in Italy: old acquaintances for new combinations. Microb. Drug Resist. 25, 787–790. doi:  10.1089/mdr.2018.0327 [DOI] [PubMed] [Google Scholar]
  53. Pitout J. D., Laupland K. B. (2008). Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8, 159–166. doi:  10.1016/S1473-3099(08)70041-0 [DOI] [PubMed] [Google Scholar]
  54. Pomba C., Rantala M., Greko C., Baptiste K. E., Catry B., van Duijkeren E., et al. (2017). Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 72, 957–968. doi:  10.1093/jac/dkw481 [DOI] [PubMed] [Google Scholar]
  55. Salgado-Caxito M., Benavides J. A., Adell A. D., Paes A. C., Moreno-Switt A. I. (2021). Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats - a scoping review and meta-analysis. One Health 12, 100236. doi:  10.1016/j.onehlt.2021.100236 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Salinas L., Loayza F., Cárdenas P., Saraiva C., Johnson T. J., Amato H., et al. (2021). Environmental spread of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and ESBL genes among children and domestic animals in Ecuador. Environ. Health Perspect. 129, 27007. doi:  10.1289/EHP7729 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Samanta I., Joardar S. N., Mahanti A., Bandyopadhyay S., Sar T. K., Dutta T. K. (2015). Approaches to characterize extended spectrum beta-lactamase/beta-lactamase producing Escherichia coli in healthy organized vis-a-vis backyard farmed pigs in India. Infect. Genet. Evol. 36, 224–230. doi:  10.1016/j.meegid.2015.09.021 [DOI] [PubMed] [Google Scholar]
  58. Sánchez-Salazar E., Gudiño M. E., Sevillano G., Zurita J., Guerrero-López R., Jaramillo K., et al. (2020). Antibiotic resistance of Salmonella strains from layer poultry farms in central Ecuador. J. Appl. Microbiol. 128, 1347–1354. doi:  10.1111/jam.14562 [DOI] [PubMed] [Google Scholar]
  59. Seiffert S. N., Hilty M., Perreten V., Endimiani A. (2013). Extended-spectrum cephalosporin-resistant gram-negative organisms in livestock: An emerging problem for human health? Drug Resist. Updat. 16, 22–45. doi:  10.1016/j.drup.2012.12.001 [DOI] [PubMed] [Google Scholar]
  60. Sellera F. P., Da Silva L. C. B. A., Lincopan N. (2021). Rapid spread of critical priority carbapenemase-producing pathogens in companion animals: a One Health challenge for a post-pandemic world. J. Antimicrob. Chemother. 76, 2225–2229. doi:  10.1093/jac/dkab169 [DOI] [PubMed] [Google Scholar]
  61. Sghaier S., Abbassi M. S., Pascual A., Serrano L., Díaz-De-Alba P., Said M., et al. (2019). Extended-spectrum β-lactamase-producing Enterobacteriaceae from animal origin and wastewater in Tunisia: first detection of O25b-B23-CTX-M-27-ST131 Escherichia coli and CTX-M-15/OXA-204-producing Citrobacter freundii from wastewater. J. Glob. Antimicrob. Resist. 17, 189–194. doi:  10.1016/j.jgar.2019.01.002 [DOI] [PubMed] [Google Scholar]
  62. Shen Z., Gao Q., Qin J., Liu Y., Li M. (2020). Emergence of an NDM-5-producing hypervirulent Klebsiella pneumoniae sequence type 35 strain with chromosomal integration of an integrative and conjugative element, ICEKp1. Antimicrob. Agents Chemother. 64, e01675–e01619. doi:  10.1128/AAC.01675-19 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Soria Segarra C., Soria Baquero E., Cartelle Gestal M. (2018). High prevalence of CTX-M-1-like enzymes in urinary isolates of Escherichia coli in Guayaquil, Ecuador. Microb. Drug Resist. 24, 393–402. doi:  10.1089/mdr.2017.0325 [DOI] [PubMed] [Google Scholar]
  64. Surleac M., Barbu I. C., Paraschiv S., Popa L. I., Gheorghe I., Marutescu L., et al. (2020). Whole genome sequencing snapshot of multidrug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. PloS One 15, 1–17. doi:  10.1371/journal.pone.0228079 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D. L., et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327. doi:  10.1016/S1473-3099(17)30753-3. [DOI] [PubMed] [Google Scholar]
  66. Toledano-Tableros J. E., Gayosso-Vázquez C., Jarillo-Quijada M. D., Fernández-Vázquez J. L., Morfin-Otero R., Rodríguez-Noriega E., et al. (2021). Dissemination of bla NDM–1 gene among several Klebsiella pneumoniae sequence types in Mexico associated with horizontal transfer mediated by IncF-like plasmids. Front. Microbiol. 12. doi:  10.3389/fmicb.2021.611274 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Umber J. K., Bender J. B. (2009). Pets and antimicrobial resistance. Vet. Clin. N. Am. - Small Anim. Pract. 39, 279–292. doi:  10.1016/j.cvsm.2008.10.016 [DOI] [PubMed] [Google Scholar]
  68. Umpiérrez A., Bado I., Oliver M., Acquistapace S., Etcheverría A., Padola N. L., et al. (2017). Zoonotic potential and antibiotic resistance of Escherichia coli in neonatal calves in Uruguay. Microbes Environ. 32, 275–282. doi:  10.1264/jsme2.ME17046 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Villegas M. V., Kattan J. N., Quinteros M. G., Casellas J. M. (2008). Prevalence of extended-spectrum β-lactamases in South America. Clin. Microb. Infect. 14, 154–158. doi:  10.1111/j.1469-0691.2007.01869.x [DOI] [PubMed] [Google Scholar]
  70. Vinueza-Burgos C., Cevallos M., Ron-Garrido L., Bertrand S., De Zutter L. (2016). Prevalence and diversity of Salmonella serotypes in Ecuadorian broilers at slaughter age. PloS One 11, 1–12. doi:  10.1371/journal.pone.0159567 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Vinueza-Burgos C., Ortega-Paredes D., Narvaéz C., De Zutter L., Zurita J. (2019). Characterization of cefotaxime resistant Escherichia coli isolated from broiler farms in Ecuador. PloS One 14, 1–14. doi:  10.1371/journal.pone.0207567 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Yan J. J., Wang M. C., Zheng P. X., Tsai L. H., Wu J. J. (2015). Associations of the major international high-risk resistant clones and virulent clones with specific ompK36 allele groups in Klebsiella pneumoniae in Taiwan. New Microbes New Infect. 5, 1–4. doi:  10.1016/j.nmni.2015.01.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Yang J.-T., Zhang L.-J., Lu Y., Zhang R.-M., Jiang H.-X. (2023). Genomic insights into global bla CTX-M-55-positive Escherichia coli epidemiology and transmission characteristics. Microbiol. Spectr. 11, e0108923. doi:  10.1128/spectrum.01089-23 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Yasugi M., Hatoya S., Motooka D., Matsumoto Y., Shimamura S., Tani H., et al. (2021). Whole-genome analyses of extended-spectrum or AmpC β-lactamase-producing Escherichia coli isolates from companion dogs in Japan. PLoSONE. 16, e0246482. doi:  10.1371/journal.pone.0246482 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Zhang J., Zheng B., Zhao L., Wei Z., Ji J., Li L., et al. (2014). Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese County Hospitals. BMC Infect. Dis. 14, 659. doi:  10.1186/s12879-014-0659-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Zhao F., Feng Y., Lü X., McNally A., Zong Z. (2017). Remarkable diversity of Escherichia coli carrying mcr-1 from hospital sewage with the identification of two new mcr-1 variants. Front. Microbiol. 8. doi:  10.3389/fmicb.2017.02094 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Zhao D., Zuo Y., Wang Z., Li J. (2019). Characterize carbapenem-resistant Klebsiella pneumoniae isolates for nosocomial pneumonia and their Gram-negative bacteria neighbors in the respiratory tract. Mol. Biol. Rep. 46, 609–616. doi:  10.1007/s11033-018-4515-y [DOI] [PubMed] [Google Scholar]
  78. Zhong X. S., Li Y. Z., Ge J., Xiao G., Mo Y., Wen Y. Q., et al. (2020). Comparisons of microbiological characteristics and antibiotic resistance of Klebsiella pneumoniae isolates from urban rodents, shrews, and healthy people. BMC Microbiol. 20, 1–8. doi:  10.1186/s12866-020-1702-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Zogg A. L., Simmen S., Zurfluh K., Stephan R., Schmitt S. N., Nüesch-Inderbinen M. (2018). High prevalence of extended-spectrum β-Lactamase producing Enterobacteriaceae among clinical isolates from cats and dogs admitted to a veterinary hospital in Switzerland. Front. Vet. Sci. 5. doi:  10.3389/fvets.2018.00062 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Zurita J., Alcocer I., Ortega-Paredes D., Barba P., Yauri F., Iñiguez D., et al. (2013). Carbapenem-hydrolysing β-lactamase KPC-2 in Klebsiella pneumoniae isolated in Ecuadorian hospitals. J. Glob. Antimicrob. Resist. 1, 229–230. doi:  10.1016/j.jgar.2013.06.001 [DOI] [PubMed] [Google Scholar]
  81. Zurita J., Solís M. B., Ortega-Paredes D., Barba P., Paz y Miño A., Sevillano G. (2019). High prevalence of B2-ST131 clonal group among extended-spectrum β-lactamase-producing Escherichia coli isolated from bloodstream infections in Quito, Ecuador. J. Glob. Antimicrob. Resist. 19, 216–221. doi:  10.1016/j.jgar.2019.04.019 [DOI] [PubMed] [Google Scholar]
  82. Zurita J., Yánez F., Sevillano G., Ortega-Paredes D., Paz y Miño A. (2020). Ready-to-eat street food: a potential source for dissemination of multidrug-resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett. Appl. Microbiol. 70, 203–209. doi:  10.1111/lam.13263 [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

DataSheet_1.pdf (559.5KB, pdf)
Image_1.tif (2.4MB, tif)
Table_1.xlsx (36.3KB, xlsx)
Table_2.xlsx (15KB, xlsx)
Table_3.xlsx (30.6KB, xlsx)

Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.


Articles from Frontiers in Cellular and Infection Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES