Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Dec;458:85–97. doi: 10.1113/jphysiol.1992.sp019407

Na+ current densities and voltage dependence in human intercostal muscle fibres.

R L Ruff 1, D Whittlesey 1
PMCID: PMC1175145  PMID: 1338797

Abstract

1. Voltage-clamp Na+ currents (INa) were studied in human intercostal muscle fibres using the loose-patch-clamp technique. 2. The fibres could be divided into two groups based upon the properties of INa. The two groups of fibres were called type 1 and type 2. 3. Both type 1 and type 2 fibres demonstrated fast and slow inactivation of INa. 4. Type 1 fibres had lower INa on the endplate border and extrajunctional membrane than type 2 fibres and required larger membrane depolarizations to inactivate Na+ channels by fast or slow inactivation of INa. 5. Type 2 fibres had a higher ratio of INa at the endplate border compared to extrajunctional membrane than Type 1 fibres. 6. Measurement of membrane capacitance suggested that the increase in INa at the endplate border was due to increased Na+ channel density. 7. Histochemical staining of some fibres suggested that type 1 fibres were slow twitch and type 2 fibres were fast twitch. 8. Differences in the properties of Na+ channels between fast- and slow-twitch fibres may contribute to the ability of fast-twitch fibres to operate at high firing frequencies and slow-twitch fibres to be tonically active.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., Roberts W. M., Ruff R. L. Voltage clamp of rat and human skeletal muscle: measurements with an improved loose-patch technique. J Physiol. 1984 Feb;347:751–768. doi: 10.1113/jphysiol.1984.sp015094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banker B. Q., Kelly S. S., Robbins N. Neuromuscular transmission and correlative morphology in young and old mice. J Physiol. 1983 Jun;339:355–377. doi: 10.1113/jphysiol.1983.sp014721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caldwell J. H., Campbell D. T., Beam K. G. Na channel distribution in vertebrate skeletal muscle. J Gen Physiol. 1986 Jun;87(6):907–932. doi: 10.1085/jgp.87.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clausen T., Everts M. E. K(+)-induced inhibition of contractile force in rat skeletal muscle: role of active Na(+)-K+ transport. Am J Physiol. 1991 Nov;261(5 Pt 1):C799–C807. doi: 10.1152/ajpcell.1991.261.5.C799. [DOI] [PubMed] [Google Scholar]
  5. Dulhunty A. F. Potassium contractures and mechanical activation in mammalian skeletal muscles. J Membr Biol. 1980 Dec 30;57(3):223–233. doi: 10.1007/BF01869590. [DOI] [PubMed] [Google Scholar]
  6. Duval A., Léoty C. Ionic currents in slow twitch skeletal muscle in the rat. J Physiol. 1980 Oct;307:23–41. doi: 10.1113/jphysiol.1980.sp013421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Everts M. E., Retterstøl K., Clausen T. Effects of adrenaline on excitation-induced stimulation of the sodium-potassium pump in rat skeletal muscle. Acta Physiol Scand. 1988 Oct;134(2):189–198. doi: 10.1111/j.1748-1716.1988.tb08479.x. [DOI] [PubMed] [Google Scholar]
  8. Franke C., Hatt H. Characteristics of single Na+ channels of adult human skeletal muscle. Pflugers Arch. 1990 Jan;415(4):399–406. doi: 10.1007/BF00373616. [DOI] [PubMed] [Google Scholar]
  9. Hennig R., Lømo T. Firing patterns of motor units in normal rats. Nature. 1985 Mar 14;314(6007):164–166. doi: 10.1038/314164a0. [DOI] [PubMed] [Google Scholar]
  10. Juel C. Muscle action potential propagation velocity changes during activity. Muscle Nerve. 1988 Jul;11(7):714–719. doi: 10.1002/mus.880110707. [DOI] [PubMed] [Google Scholar]
  11. Kirsch G. E., Anderson M. F. Sodium channel kinetics in normal and denervated rabbit muscle membrane. Muscle Nerve. 1986 Oct;9(8):738–747. doi: 10.1002/mus.880090810. [DOI] [PubMed] [Google Scholar]
  12. Laszewski B., Ruff R. L. Effects of glucocorticoid treatment on excitation-contraction coupling. Am J Physiol. 1985 Mar;248(3 Pt 1):E363–E369. doi: 10.1152/ajpendo.1985.248.3.E363. [DOI] [PubMed] [Google Scholar]
  13. Lev-Tov A. Junctional transmission in fast- and slow-twitch mammalian motor units. J Neurophysiol. 1987 Mar;57(3):660–671. doi: 10.1152/jn.1987.57.3.660. [DOI] [PubMed] [Google Scholar]
  14. Miledi R., Zelená J. Sensitivity to acetylcholine in rat slow muscle. Nature. 1966 May 21;210(5038):855–856. doi: 10.1038/210855a0. [DOI] [PubMed] [Google Scholar]
  15. Milton R. L., Caldwell J. H. Na current in membrane blebs: implications for channel mobility and patch clamp recording. J Neurosci. 1990 Mar;10(3):885–893. doi: 10.1523/JNEUROSCI.10-03-00885.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roberts W. M. Sodium channels near end-plates and nuclei of snake skeletal muscle. J Physiol. 1987 Jul;388:213–232. doi: 10.1113/jphysiol.1987.sp016611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ruff R. L. Calcium sensitivity of fast- and slow-twitch human muscle fibers. Muscle Nerve. 1989 Jan;12(1):32–37. doi: 10.1002/mus.880120107. [DOI] [PubMed] [Google Scholar]
  18. Ruff R. L. Ionic channels: I. The biophysical basis for ion passage and channel gating. Muscle Nerve. 1986 Oct;9(8):675–699. doi: 10.1002/mus.880090803. [DOI] [PubMed] [Google Scholar]
  19. Ruff R. L., Martyn D., Gordon A. M. Glucocorticoid-induced atrophy is not due to impaired excitability of rat muscle. Am J Physiol. 1982 Dec;243(6):E512–E521. doi: 10.1152/ajpendo.1982.243.6.E512. [DOI] [PubMed] [Google Scholar]
  20. Ruff R. L., Simoncini L., Stühmer W. Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J Physiol. 1987 Feb;383:339–348. doi: 10.1113/jphysiol.1987.sp016412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ruff R. L., Spiegel P. Ca sensitivity and acetylcholine receptor currents of twitch and tonic snake muscle fibers. Am J Physiol. 1990 Dec;259(6 Pt 1):C911–C919. doi: 10.1152/ajpcell.1990.259.6.C911. [DOI] [PubMed] [Google Scholar]
  22. Sillau A. H. Capillarity, oxidative capacity and fibre composition of the soleus and gastrocnemius muscles of rats in hypothyroidism. J Physiol. 1985 Apr;361:281–295. doi: 10.1113/jphysiol.1985.sp015646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simoncini L., Stühmer W. Slow sodium channel inactivation in rat fast-twitch muscle. J Physiol. 1987 Feb;383:327–337. doi: 10.1113/jphysiol.1987.sp016411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sjøgaard G., Adams R. P., Saltin B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol. 1985 Feb;248(2 Pt 2):R190–R196. doi: 10.1152/ajpregu.1985.248.2.R190. [DOI] [PubMed] [Google Scholar]
  25. Sterz R., Pagala M., Peper K. Postjunctional characteristics of the endplates in mammalian fast and slow muscles. Pflugers Arch. 1983 Jun;398(1):48–54. doi: 10.1007/BF00584712. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES