Abstract
1. Responses of the carotid artery of rabbits to intraluminal and abluminal administration of purinergic agonists were examined. The carotid artery was perfused in vitro and changes in diameter were recorded. 2. Intraluminal acetylcholine, ADP, and ATP produced pronounced vasodilatation, whereas abluminal acetylcholine, but not ADP and ATP, produced dilatation of phenylephrine-preconstricted arteries. Intra- and abluminal adenosine and nitroprusside produced equipotent vasodilatation. 3. N omega-nitro-L-arginine abolished dilator responses to acetylcholine and adenine nucleotides, and unmasked vasoconstrictor responses to high concentrations of these agonists. Responses to adenosine and nitroprusside were not affected by nitro-L-arginine. 4. Intraluminal, but not abluminal, administration of nucleotidase-resistant adenine nucleotide analogues 2-methylthio-ATP and ADP beta S produced significant vasodilation in arteries preconstricted with phenylephrine. Intra- and abluminal administration of alpha,beta-methylene-ATP, a potent P2X-purinoceptor agonist, did not produce vasodilatation in preconstricted arteries. 5. Abluminal ADP failed to elicit dilatation of phenylephrine-preconstricted arteries even in the presence of the ADPase inhibitor beta,gamma-methylene-ATP (10(-5)M). When P2X-purinoceptors, which mediate adenine nucleotide-induced vasoconstriction, were stimulated with alpha,beta-methylene-ATP (10(-5)M), abluminal ADP produced vasodilatation, presumably because P2X-purinoceptors were occupied, thereby unmasking P2Y-purinoceptor-mediated dilatation. 6. These results suggest that asymmetric vascular responses of rabbit carotid arteries to adenine nucleotides may be due in part to preferential activation of P2Y-purinergic receptors on endothelium and P2X-purinergic receptors on vascular smooth muscle.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angus J. A., Campbell G. R., Cocks T. M., Manderson J. A. Vasodilatation by acetylcholine is endothelium-dependent: a study by sonomicrometry in canine femoral artery in vivo. J Physiol. 1983 Nov;344:209–222. doi: 10.1113/jphysiol.1983.sp014934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bassenge E., Busse R. Endothelial modulation of coronary tone. Prog Cardiovasc Dis. 1988 Mar-Apr;30(5):349–380. doi: 10.1016/0033-0620(88)90003-5. [DOI] [PubMed] [Google Scholar]
- Burnstock G., Kennedy C. A dual function for adenosine 5'-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ Res. 1986 Mar;58(3):319–330. doi: 10.1161/01.res.58.3.319. [DOI] [PubMed] [Google Scholar]
- Busse R., Trogisch G., Bassenge E. The role of endothelium in the control of vascular tone. Basic Res Cardiol. 1985 Sep-Oct;80(5):475–490. doi: 10.1007/BF01907912. [DOI] [PubMed] [Google Scholar]
- Chen G., Suzuki H. Endothelium-dependent hyperpolarization elicited by adenine compounds in rabbit carotid artery. Am J Physiol. 1991 Apr;260(4 Pt 2):H1037–H1042. doi: 10.1152/ajpheart.1991.260.4.H1037. [DOI] [PubMed] [Google Scholar]
- Cohen R. A., Shepherd J. T., Vanhoutte P. M. Endothelium and asymmetrical responses of the coronary arterial wall. Am J Physiol. 1984 Sep;247(3 Pt 2):H403–H408. doi: 10.1152/ajpheart.1984.247.3.H403. [DOI] [PubMed] [Google Scholar]
- De Mey J. G., Vanhoutte P. M. Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J Physiol. 1981 Jul;316:347–355. doi: 10.1113/jphysiol.1981.sp013792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham J. M., Keatinge W. R. Differences in sensitivity to vasoconstrictor drugs within the wall of the sheep carotid artery. J Physiol. 1972 Mar;221(2):477–492. doi: 10.1113/jphysiol.1972.sp009763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houston D. S., Shepherd J. T., Vanhoutte P. M. Adenine nucleotides, serotonin, and endothelium-dependent relaxations to platelets. Am J Physiol. 1985 Mar;248(3 Pt 2):H389–H395. doi: 10.1152/ajpheart.1985.248.3.H389. [DOI] [PubMed] [Google Scholar]
- Katusić Z. S. Endothelium-independent contractions to NG-monomethyl-L-arginine in canine basilar artery. Stroke. 1991 Nov;22(11):1399–1404. doi: 10.1161/01.str.22.11.1399. [DOI] [PubMed] [Google Scholar]
- Keatinge W. R., Torrie C. Action of sympathetic nerves of inner and outer muscle of sheep carotid artery, and effect of pressure on nerve distribution. J Physiol. 1976 Jun;257(3):699–712. doi: 10.1113/jphysiol.1976.sp011393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy C., Delbro D., Burnstock G. P2-purinoceptors mediate both vasodilation (via the endothelium) and vasoconstriction of the isolated rat femoral artery. Eur J Pharmacol. 1985 Jan 2;107(2):161–168. doi: 10.1016/0014-2999(85)90055-x. [DOI] [PubMed] [Google Scholar]
- McCalden T. A., Bevan J. A. Asymmetry of the contractile response of the rabbit ear artery to exogenous amines. Am J Physiol. 1980 May;238(5):H618–H624. doi: 10.1152/ajpheart.1980.238.5.H618. [DOI] [PubMed] [Google Scholar]
- Ohta T., Mori M., Ogawa R., Tsuji M. Development of a new perfusion system for pharmacological study on rabbit basilar arteries. Stroke. 1991 Mar;22(3):384–389. doi: 10.1161/01.str.22.3.384. [DOI] [PubMed] [Google Scholar]
- Olsson R. A., Pearson J. D. Cardiovascular purinoceptors. Physiol Rev. 1990 Jul;70(3):761–845. doi: 10.1152/physrev.1990.70.3.761. [DOI] [PubMed] [Google Scholar]
- Pearson J. D., Carleton J. S., Gordon J. L. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J. 1980 Aug 15;190(2):421–429. doi: 10.1042/bj1900421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ralevic V., Burnstock G. Roles of P2-purinoceptors in the cardiovascular system. Circulation. 1991 Jul;84(1):1–14. doi: 10.1161/01.cir.84.1.1. [DOI] [PubMed] [Google Scholar]
- Rubanyi G. M., Romero J. C., Vanhoutte P. M. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986 Jun;250(6 Pt 2):H1145–H1149. doi: 10.1152/ajpheart.1986.250.6.H1145. [DOI] [PubMed] [Google Scholar]
- Shimokawa H., Kim P., Vanhoutte P. M. Endothelium-dependent relaxation to aggregating platelets in isolated basilar arteries of control and hypercholesterolemic pigs. Circ Res. 1988 Sep;63(3):604–612. doi: 10.1161/01.res.63.3.604. [DOI] [PubMed] [Google Scholar]
- Sneddon P., Burnstock G. Inhibition of excitatory junction potentials in guinea-pig vas deferens by alpha, beta-methylene-ATP: further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol. 1984 Apr 13;100(1):85–90. doi: 10.1016/0014-2999(84)90318-2. [DOI] [PubMed] [Google Scholar]
- Vinall P. E., Simeone F. A. Whole mounted pressurized in vitro model for the study of cerebral arterial mechanics. Blood Vessels. 1987;24(1-2):51–62. doi: 10.1159/000158671. [DOI] [PubMed] [Google Scholar]
