Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Dec;458:339–359. doi: 10.1113/jphysiol.1992.sp019421

Prostaglandin modulation of Ca2+ channels in rat sympathetic neurones is mediated by guanine nucleotide binding proteins.

S R Ikeda 1
PMCID: PMC1175159  PMID: 1338790

Abstract

1. The effects of prostaglandins on whole-cell Ca2+ currents of acutely isolated and short-term cultured adult rat superior cervical ganglion neurones were investigated using the patch-clamp technique. 2. Prostaglandin E2 (PGE2) produced a rapid, reversible and concentration-dependent reduction of the sympathetic neurone Ca2+ current. The effects of PGE2 were both voltage and time dependent. The relationship between Ca2+ current inhibition and test potential was 'bell' shaped with maximal inhibition occurring near the potential where the Ca2+ current amplitude was maximal (ca + 10 mV). In the presence of PGE2, the Ca2+ current rising phase was slower and biphasic at potentials between 0 and +40 mV. 3. Prolonged (> 2 min) application of 1 microM PGE2 resulted in a desensitization of the response. Similarly, repeated short (ca 1 min) applications of 1 microM PGE2 resulted in a progressive tachyphylaxis of the response. 4. A concentration-response curve for PGE2 was well described by a single-site binding isotherm. The concentration producing half-maximal block (IC50) and the maximal attainable reduction of the Ca2+ current were 7.8 nM and 48%, respectively. 5. When compared at a concentration of 1 microM, PGF2 alpha was less potent (33% inhibition) than PGE2 but otherwise produced similar effects. In contrast, 1 microM PGD2 had negligible effects. 6. Activation curves, as derived from tail current amplitudes, were described by the sum of two Boltzmann functions in both the presence and absence of PGE2. In the presence of PGE2, the activation curve was shifted toward more depolarized potentials. Most of the shift could be accounted for by a decrease in the fractional amplitude of the current component activated at hyperpolarized potentials along with a concomitant increase in the component activated at depolarized potentials. The deactivation time constant (0.33 ms), measured at -40 mV, was not altered by PGE2. 7. The majority of the Ca2+ current inhibition produced by PGE2 was relieved by depolarizing conditioning pre-pulses to +80 mV for 50 ms. 8. Dialysis of sympathetic neurones with a pipette solution containing 2.0 mM guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) abolished the effects of PGE2 on the Ca2+ current. Pretreatment of the neurones overnight with pertussis toxin significantly, but incompletely, decreased the Ca2+ current inhibition produced by PGE2. 9. The prolonged Ca2+ tail current component induced by the dihydropyridine Ca2+ channel 'agonist' (+)202-791 (2 microM) was unaffected by 1 microM PGE2. 10. PGE2 partially inhibited the Ca2+ current component remaining after pretreatment of the neurones with 10 microM omega-conotoxin.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
339

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astrand P., Stjärne L. A calcium-dependent component of the action potential in sympathetic nerve terminals in rat tail artery. Pflugers Arch. 1991 Mar;418(1-2):102–108. doi: 10.1007/BF00370458. [DOI] [PubMed] [Google Scholar]
  2. Bean B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature. 1989 Jul 13;340(6229):153–156. doi: 10.1038/340153a0. [DOI] [PubMed] [Google Scholar]
  3. Beech D. J., Bernheim L., Mathie A., Hille B. Intracellular Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):652–656. doi: 10.1073/pnas.88.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bley K. R., Tsien R. W. Inhibition of Ca2+ and K+ channels in sympathetic neurons by neuropeptides and other ganglionic transmitters. Neuron. 1990 Mar;4(3):379–391. doi: 10.1016/0896-6273(90)90050-p. [DOI] [PubMed] [Google Scholar]
  5. Brody M. J., Kadowitz P. J. Prostaglandins as modulators of the autonomic nervous system. Fed Proc. 1974 Jan;33(1):48–60. [PubMed] [Google Scholar]
  6. Eckstein F., Cassel D., Levkovitz H., Lowe M., Selinger Z. Guanosine 5'-O-(2-thiodiphosphate). An inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J Biol Chem. 1979 Oct 10;254(19):9829–9834. [PubMed] [Google Scholar]
  7. Elmslie K. S., Zhou W., Jones S. W. LHRH and GTP-gamma-S modify calcium current activation in bullfrog sympathetic neurons. Neuron. 1990 Jul;5(1):75–80. doi: 10.1016/0896-6273(90)90035-e. [DOI] [PubMed] [Google Scholar]
  8. Gonzales R., Sherbourne C. D., Goldyne M. E., Levine J. D. Noradrenaline-induced prostaglandin production by sympathetic postganglionic neurons is mediated by alpha 2-adrenergic receptors. J Neurochem. 1991 Oct;57(4):1145–1150. doi: 10.1111/j.1471-4159.1991.tb08272.x. [DOI] [PubMed] [Google Scholar]
  9. Grassi F., Lux H. D. Voltage-dependent GABA-induced modulation of calcium currents in chick sensory neurons. Neurosci Lett. 1989 Oct 23;105(1-2):113–119. doi: 10.1016/0304-3940(89)90021-9. [DOI] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Hirning L. D., Fox A. P., McCleskey E. W., Olivera B. M., Thayer S. A., Miller R. J., Tsien R. W. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988 Jan 1;239(4835):57–61. doi: 10.1126/science.2447647. [DOI] [PubMed] [Google Scholar]
  12. Holz G. G., 4th, Rane S. G., Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature. 1986 Feb 20;319(6055):670–672. doi: 10.1038/319670a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ikeda S. R. Double-pulse calcium channel current facilitation in adult rat sympathetic neurones. J Physiol. 1991 Aug;439:181–214. doi: 10.1113/jphysiol.1991.sp018663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ikeda S. R., Schofield G. G. Somatostatin blocks a calcium current in rat sympathetic ganglion neurones. J Physiol. 1989 Feb;409:221–240. doi: 10.1113/jphysiol.1989.sp017494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackson E. K., Herzer W. A., Lawson J. A. Defective modulation of noradrenergic neurotransmission by exogenous prostaglandins in aging spontaneously hypertensive rats. J Pharmacol Exp Ther. 1989 Dec;251(3):858–869. [PubMed] [Google Scholar]
  16. Jones S. W., Marks T. N. Calcium currents in bullfrog sympathetic neurons. I. Activation kinetics and pharmacology. J Gen Physiol. 1989 Jul;94(1):151–167. doi: 10.1085/jgp.94.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kasai H., Aosaki T. Modulation of Ca-channel current by an adenosine analog mediated by a GTP-binding protein in chick sensory neurons. Pflugers Arch. 1989 Jun;414(2):145–149. doi: 10.1007/BF00580956. [DOI] [PubMed] [Google Scholar]
  18. Kasai H. Tonic inhibition and rebound facilitation of a neuronal calcium channel by a GTP-binding protein. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8855–8859. doi: 10.1073/pnas.88.19.8855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kasai H. Voltage- and time-dependent inhibition of neuronal calcium channels by a GTP-binding protein in a mammalian cell line. J Physiol. 1992 Mar;448:189–209. doi: 10.1113/jphysiol.1992.sp019036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Langer S. Z. Presynaptic regulation of the release of catecholamines. Pharmacol Rev. 1980 Dec;32(4):337–362. [PubMed] [Google Scholar]
  21. Lipscombe D., Kongsamut S., Tsien R. W. Alpha-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature. 1989 Aug 24;340(6235):639–642. doi: 10.1038/340639a0. [DOI] [PubMed] [Google Scholar]
  22. Lopez H. S., Brown A. M. Correlation between G protein activation and reblocking kinetics of Ca2+ channel currents in rat sensory neurons. Neuron. 1991 Dec;7(6):1061–1068. doi: 10.1016/0896-6273(91)90350-9. [DOI] [PubMed] [Google Scholar]
  23. Marchetti C., Carbone E., Lux H. D. Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch. 1986 Feb;406(2):104–111. doi: 10.1007/BF00586670. [DOI] [PubMed] [Google Scholar]
  24. Marchetti C., Robello M. Guanosine-5'-O-(3-thiotriphosphate) modifies kinetics of voltage-dependent calcium current in chick sensory neurons. Biophys J. 1989 Dec;56(6):1267–1272. doi: 10.1016/S0006-3495(89)82774-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mintz I. M., Venema V. J., Adams M. E., Bean B. P. Inhibition of N- and L-type Ca2+ channels by the spider venom toxin omega-Aga-IIIA. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6628–6631. doi: 10.1073/pnas.88.15.6628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mintz I. M., Venema V. J., Swiderek K. M., Lee T. D., Bean B. P., Adams M. E. P-type calcium channels blocked by the spider toxin omega-Aga-IVA. Nature. 1992 Feb 27;355(6363):827–829. doi: 10.1038/355827a0. [DOI] [PubMed] [Google Scholar]
  27. Mo N., Ammari R., Dun N. J. Prostaglandin E1 inhibits calcium-dependent potentials in mammalian sympathetic neurons. Brain Res. 1985 May 20;334(2):325–329. doi: 10.1016/0006-8993(85)90225-2. [DOI] [PubMed] [Google Scholar]
  28. Plummer M. R., Logothetis D. E., Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron. 1989 May;2(5):1453–1463. doi: 10.1016/0896-6273(89)90191-8. [DOI] [PubMed] [Google Scholar]
  29. Plummer M. R., Rittenhouse A., Kanevsky M., Hess P. Neurotransmitter modulation of calcium channels in rat sympathetic neurons. J Neurosci. 1991 Aug;11(8):2339–2348. doi: 10.1523/JNEUROSCI.11-08-02339.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pollo A., Taglialatela M., Carbone E. Voltage-dependent inhibition and facilitation of Ca channel activation by GTP-gamma-S and Ca-agonists in adult rat sensory neurons. Neurosci Lett. 1991 Feb 25;123(2):203–207. doi: 10.1016/0304-3940(91)90931-i. [DOI] [PubMed] [Google Scholar]
  31. Regan L. J., Sah D. W., Bean B. P. Ca2+ channels in rat central and peripheral neurons: high-threshold current resistant to dihydropyridine blockers and omega-conotoxin. Neuron. 1991 Feb;6(2):269–280. doi: 10.1016/0896-6273(91)90362-4. [DOI] [PubMed] [Google Scholar]
  32. Schofield G. G., Ikeda S. R. Sodium and calcium currents of acutely isolated adult rat superior cervical ganglion neurons. Pflugers Arch. 1988 May;411(5):481–490. doi: 10.1007/BF00582368. [DOI] [PubMed] [Google Scholar]
  33. Schofield G. G. Norepinephrine blocks a calcium current of adult rat sympathetic neurons via an alpha 2-adrenoceptor. Eur J Pharmacol. 1990 May 3;180(1):37–47. doi: 10.1016/0014-2999(90)90590-3. [DOI] [PubMed] [Google Scholar]
  34. Scott R. H., Dolphin A. C. Voltage-dependent modulation of rat sensory neurone calcium channel currents by G protein activation: effect of a dihydropyridine antagonist. Br J Pharmacol. 1990 Apr;99(4):629–630. doi: 10.1111/j.1476-5381.1990.tb12981.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scroggs R. S., Fox A. P. Distribution of dihydropyridine and omega-conotoxin-sensitive calcium currents in acutely isolated rat and frog sensory neuron somata: diameter-dependent L channel expression in frog. J Neurosci. 1991 May;11(5):1334–1346. doi: 10.1523/JNEUROSCI.11-05-01334.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Song S. Y., Saito K., Noguchi K., Konishi S. Adrenergic and cholinergic inhibition of Ca2+ channels mediated by different GTP-binding proteins in rat sympathetic neurones. Pflugers Arch. 1991 Jul;418(6):592–600. doi: 10.1007/BF00370576. [DOI] [PubMed] [Google Scholar]
  37. Tsunoo A., Yoshii M., Narahashi T. Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9832–9836. doi: 10.1073/pnas.83.24.9832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Undem B. J., Hubbard W. C., Christian E. P., Weinreich D. Mast cells in the guinea pig superior cervical ganglion: a functional and histological assessment. J Auton Nerv Syst. 1990 Apr;30(1):75–87. doi: 10.1016/0165-1838(90)90164-e. [DOI] [PubMed] [Google Scholar]
  39. Wanke E., Ferroni A., Malgaroli A., Ambrosini A., Pozzan T., Meldolesi J. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313–4317. doi: 10.1073/pnas.84.12.4313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Webb J. G., Saelens D. A., Halushka P. V. Biosynthesis of prostaglandin E by rat superior cervical ganglia. J Neurochem. 1978 Jul;31(1):13–19. doi: 10.1111/j.1471-4159.1978.tb12427.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES