Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Dec;458:425–438. doi: 10.1113/jphysiol.1992.sp019425

Influence of hypertonic-hyperoncotic solution and furosemide on canine hydrostatic pulmonary oedema resorption.

C J Wickerts 1, B Berg 1, C Frostell 1, J Schmidt 1, H Blomqvist 1, P G Rösblad 1, I Kihlström 1, K Messmer 1, G Hedenstierna 1
PMCID: PMC1175163  PMID: 1302272

Abstract

1. This study aimed at enhancing the clearance of experimental hydrostatic pulmonary oedema in dogs using hypertonic-hyperoncotic solution (HHS) and furosemide. 2. Anaesthetized dogs (n = 20) were mechanically ventilated with a positive end-expiratory pressure of 10 cmH2O (1.0 kPa). 3. Hydrostatic pulmonary oedema was induced by inflating a balloon inserted into the left atrium and simultaneously infusing isotonic saline rapidly. Oedema formation was terminated by deflating the balloon and reducing the infusion rate. 4. Four groups were studied: A, control; B, furosemide; C, HHS and D, HHS+furosemide. HHS, 6 ml kg-1, was given as a bolus injection and furosemide, 1 mg kg-1, intravenously as a bolus followed by an infusion of 0.5 mg kg-1 h-1. All dogs were studied for 4 h. 5. Serum osmolarity, plasma colloid oncotic pressure and diuresis in groups C and D (HHS groups) substantially increased; haemoglobin concentration decreased and pulmonary arterial wedge pressure remained constant. 6. Despite the combination of these factors favouring fluid flux from the extravascular to the intravascular compartment, extravascular lung water measured with the double indicator dilution technique decreased no faster in the HHS groups than in the two other groups (from over 26 to approximately 19 ml kg-1 in groups A, C and D and to 14.7 in group B (only furosemide)). 7. This was confirmed by postmortem gravimetric measurements of extravascular lung water; A, 11.0 +/- 5.7; B, 9.7 +/- 3.3; C, 10.5 +/- 3.1 and D, 10.6 +/- 1.8 g kg-1. 8. We speculate that mechanisms other than effective Starling gradients and enhanced diuresis might define a maximal rate of pulmonary oedema clearance.

Full text

PDF
425

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S. J., Drake R. E., Williams J. P., Laine G. A., Gabel J. C. Recent advances in pulmonary edema. Crit Care Med. 1987 Oct;15(10):963–970. doi: 10.1097/00003246-198710000-00015. [DOI] [PubMed] [Google Scholar]
  2. Auler J. O., Jr, Pereira M. H., Gomide-Amaral R. V., Stolf N. G., Jatene A. D., Rocha e Silva M. Hemodynamic effects of hypertonic sodium chloride during surgical treatment of aortic aneurysms. Surgery. 1987 May;101(5):594–601. [PubMed] [Google Scholar]
  3. Berthiaume Y., Staub N. C., Matthay M. A. Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep. J Clin Invest. 1987 Feb;79(2):335–343. doi: 10.1172/JCI112817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blomqvist H., Wickerts C. J., Berg B., Frostell C., Jolin A., Hedenstierna G. Does PEEP facilitate the resolution of extravascular lung water after experimental hydrostatic pulmonary oedema? Eur Respir J. 1991 Oct;4(9):1053–1059. [PubMed] [Google Scholar]
  5. Bo G., Hauge A., Nicolaysen G. Alveolar pressure and lung volume as determinants of net transvascular fluid filtration. J Appl Physiol Respir Environ Exerc Physiol. 1977 Apr;42(4):476–482. doi: 10.1152/jappl.1977.42.4.476. [DOI] [PubMed] [Google Scholar]
  6. Bo G., Hauge A., Nicolaysen G. Hyperosmolarity and pulmonary vascular capacitance. Acta Physiol Scand. 1971 Jul;82(3):375–381. doi: 10.1111/j.1748-1716.1971.tb04978.x. [DOI] [PubMed] [Google Scholar]
  7. Bshouty Z., Ali J., Younes M. Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes. J Appl Physiol (1985) 1988 May;64(5):1900–1907. doi: 10.1152/jappl.1988.64.5.1900. [DOI] [PubMed] [Google Scholar]
  8. Cheek J. M., Kim K. J., Crandall E. D. Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am J Physiol. 1989 Mar;256(3 Pt 1):C688–C693. doi: 10.1152/ajpcell.1989.256.3.C688. [DOI] [PubMed] [Google Scholar]
  9. Civetta J. M. A new look at the Starling equation. Crit Care Med. 1979 Mar;7(3):84–91. doi: 10.1097/00003246-197903000-00002. [DOI] [PubMed] [Google Scholar]
  10. Crandall E. D., Heming T. A., Palombo R. L., Goodman B. E. Effects of terbutaline on sodium transport in isolated perfused rat lung. J Appl Physiol (1985) 1986 Jan;60(1):289–294. doi: 10.1152/jappl.1986.60.1.289. [DOI] [PubMed] [Google Scholar]
  11. Drake R. E., Adcock D. K., Scott R. L., Gabel J. C. Effect of outflow pressure upon lymph flow from dog lungs. Circ Res. 1982 Jun;50(6):865–869. doi: 10.1161/01.res.50.6.865. [DOI] [PubMed] [Google Scholar]
  12. Drake R. E., Scott R. L., Gabel J. C. Relationship between weight gain and lymph flow in dog lungs. Am J Physiol. 1983 Jul;245(1):H125–H130. doi: 10.1152/ajpheart.1983.245.1.H125. [DOI] [PubMed] [Google Scholar]
  13. Dueck R., Wagner P. D., West J. B. Effects of positive end-expiratory pressure on gas exchange in dogs with normal and edematous lungs. Anesthesiology. 1977 Oct;47(4):359–366. doi: 10.1097/00000542-197710000-00007. [DOI] [PubMed] [Google Scholar]
  14. Frostell C., Blomqvist H., Hedenstierna G., Halbig I., Pieper R. Thoracic and abdominal lymph drainage in relation to mechanical ventilation and PEEP. Acta Anaesthesiol Scand. 1987 Jul;31(5):405–412. doi: 10.1111/j.1399-6576.1987.tb02592.x. [DOI] [PubMed] [Google Scholar]
  15. Frostell C., Blomqvist H., Wickerts C. J. Effects of PEEP on extravascular lung water and central blood volume in the dog. Acta Anaesthesiol Scand. 1987 Nov;31(8):711–716. doi: 10.1111/j.1399-6576.1987.tb02650.x. [DOI] [PubMed] [Google Scholar]
  16. Frostell C., Blomqvist H., Wickerts C. J., Hedenstierna G. Lung fluid balance evaluated by the rate of change of extravascular lung water content. Acta Anaesthesiol Scand. 1990 Jul;34(5):362–369. doi: 10.1111/j.1399-6576.1990.tb03104.x. [DOI] [PubMed] [Google Scholar]
  17. Gaar K. A., Jr, Taylor A. E., Owens L. J., Guyton A. C. Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol. 1967 Oct;213(4):910–914. doi: 10.1152/ajplegacy.1967.213.4.910. [DOI] [PubMed] [Google Scholar]
  18. Gazitúa S., Scott J. B., Chou C. C., Haddy F. J. Effect of osmolarity on canine renal vascular resistance. Am J Physiol. 1969 Oct;217(4):1216–1223. doi: 10.1152/ajplegacy.1969.217.4.1216. [DOI] [PubMed] [Google Scholar]
  19. Gee M. H., Williams D. O. Effect of lung inflation on perivascular cuff fluid volume in isolated dog lung lobes. Microvasc Res. 1979 Mar;17(2):192–201. doi: 10.1016/0026-2862(79)90406-0. [DOI] [PubMed] [Google Scholar]
  20. Goldberg H. S., Mitzner W., Batra G. Effect of transpulmonary and vascular pressures on rate of pulmonary edema formation. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jul;43(1):14–19. doi: 10.1152/jappl.1977.43.1.14. [DOI] [PubMed] [Google Scholar]
  21. Haider M., Schad H., Mendler N. Thoracic duct lymph and PEEP studies in anaesthetized dogs. I. Lymph formation and the effect of a thoracic duct fistula on lymph flow. Intensive Care Med. 1987;13(3):183–191. doi: 10.1007/BF00254702. [DOI] [PubMed] [Google Scholar]
  22. Haider M., Schad H., Mendler N. Thoracic duct lymph and PEEP studies in anaesthetized dogs. II. Effect of a thoracic duct fistula on the development of a hyponcotic-hydrostatic pulmonary oedema. Intensive Care Med. 1987;13(4):278–283. doi: 10.1007/BF00265118. [DOI] [PubMed] [Google Scholar]
  23. Hands R., Holcroft J. W., Perron P. R., Kramer G. C. Comparison of peripheral and central infusions of 7.5% NaCl/6% dextran 70. Surgery. 1988 Jun;103(6):684–689. [PubMed] [Google Scholar]
  24. Kreimeier U., Brueckner U. B., Schmidt J., Messmer K. Instantaneous restoration of regional organ blood flow after severe hemorrhage: effect of small-volume resuscitation with hypertonic-hyperoncotic solutions. J Surg Res. 1990 Dec;49(6):493–503. doi: 10.1016/0022-4804(90)90174-z. [DOI] [PubMed] [Google Scholar]
  25. Laine G. A., Allen S. J., Katz J., Gabel J. C., Drake R. E. Effect of systemic venous pressure elevation on lymph flow and lung edema formation. J Appl Physiol (1985) 1986 Nov;61(5):1634–1638. doi: 10.1152/jappl.1986.61.5.1634. [DOI] [PubMed] [Google Scholar]
  26. Levine O. R., Mellins R. B., Senior R. M., Fishman A. P. The application of Starling's law of capillary exchange to the lungs. J Clin Invest. 1967 Jun;46(6):934–944. doi: 10.1172/JCI105599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Malo J., Ali J., Wood L. D. How does positive end-expiratory pressure reduce intrapulmonary shunt in canine pulmonary edema? J Appl Physiol Respir Environ Exerc Physiol. 1984 Oct;57(4):1002–1010. doi: 10.1152/jappl.1984.57.4.1002. [DOI] [PubMed] [Google Scholar]
  28. Maningas P. A., Mattox K. L., Pepe P. E., Jones R. L., Feliciano D. V., Burch J. M. Hypertonic saline-dextran solutions for the prehospital management of traumatic hypotension. Am J Surg. 1989 May;157(5):528–534. doi: 10.1016/0002-9610(89)90654-5. [DOI] [PubMed] [Google Scholar]
  29. Matthay M. A., Berthiaume Y., Staub N. C. Long-term clearance of liquid and protein from the lungs of unanesthetized sheep. J Appl Physiol (1985) 1985 Sep;59(3):928–934. doi: 10.1152/jappl.1985.59.3.928. [DOI] [PubMed] [Google Scholar]
  30. Matthay M. A., Wiener-Kronish J. P. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1250–1257. doi: 10.1164/ajrccm/142.6_Pt_1.1250. [DOI] [PubMed] [Google Scholar]
  31. Mazzoni M. C., Borgström P., Arfors K. E., Intaglietta M. Dynamic fluid redistribution in hyperosmotic resuscitation of hypovolemic hemorrhage. Am J Physiol. 1988 Sep;255(3 Pt 2):H629–H637. doi: 10.1152/ajpheart.1988.255.3.H629. [DOI] [PubMed] [Google Scholar]
  32. Mazzoni M. C., Borgström P., Intaglietta M., Arfors K. E. Capillary narrowing in hemorrhagic shock is rectified by hyperosmotic saline-dextran reinfusion. Circ Shock. 1990 Aug;31(4):407–418. [PubMed] [Google Scholar]
  33. Mehrkens H. H., Lindner K. H., Ahnefeld F. W., Nonn T. Fluid resuscitation with hypertonic salt solutions in experimental burn shock. Burns Incl Therm Inj. 1987 Feb;13(1):53–56. doi: 10.1016/0305-4179(87)90257-9. [DOI] [PubMed] [Google Scholar]
  34. Messmer K., Kreimeier U. Microcirculatory therapy in shock. Resuscitation. 1989;18 (Suppl):S51–S61. doi: 10.1016/0300-9572(89)90053-1. [DOI] [PubMed] [Google Scholar]
  35. Mullins R. J., Hudgens R. W. Hypertonic saline resuscitates dogs in endotoxin shock. J Surg Res. 1987 Jul;43(1):37–44. doi: 10.1016/0022-4804(87)90044-8. [DOI] [PubMed] [Google Scholar]
  36. O'Brodovich H. When the alveolus is flooding, it's time to man the pumps. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1247–1248. doi: 10.1164/ajrccm/142.6_Pt_1.1247. [DOI] [PubMed] [Google Scholar]
  37. Onarheim H., Missavage A. E., Kramer G. C., Gunther R. A. Effectiveness of hypertonic saline-dextran 70 for initial fluid resuscitation of major burns. J Trauma. 1990 May;30(5):597–603. doi: 10.1097/00005373-199005000-00012. [DOI] [PubMed] [Google Scholar]
  38. PEARCE M. L., YAMASHITA J., BEAZELL J. MEASUREMENT OF PULMONARY EDEMA. Circ Res. 1965 May;16:482–488. doi: 10.1161/01.res.16.5.482. [DOI] [PubMed] [Google Scholar]
  39. Paré P. D., Warriner B., Baile E. M., Hogg J. C. Redistribution of pulmonary extravascular water with positive end-expiratory pressure in canine pulmonary edema. Am Rev Respir Dis. 1983 May;127(5):590–593. doi: 10.1164/arrd.1983.127.5.590. [DOI] [PubMed] [Google Scholar]
  40. Pilon R. N., Bittar D. A. The effect of positive end-expiratory pressure on thoracic-duct lymph flow during controlled ventilation in anesthetized dogs. Anesthesiology. 1973 Dec;39(6):607–612. doi: 10.1097/00000542-197312000-00009. [DOI] [PubMed] [Google Scholar]
  41. Saumon G., Basset G., Bouchonnet F., Crone C. cAMP and beta-adrenergic stimulation of rat alveolar epithelium. Effects on fluid absorption and paracellular permeability. Pflugers Arch. 1987 Nov;410(4-5):464–470. doi: 10.1007/BF00586526. [DOI] [PubMed] [Google Scholar]
  42. Schaeffer R. C., Jr, Reniewicz R. A., Chilton S. M., Carlson R. W. Effects of colloid or crystalloid solutions on edemagenesis in normal and thrombomicroembolized lungs. Crit Care Med. 1987 Dec;15(12):1110–1115. doi: 10.1097/00003246-198712000-00007. [DOI] [PubMed] [Google Scholar]
  43. Selinger S. L., Bland R. D., Demling R. H., Staub N. C. Distribution volumes of [131I]albumin, [14C]sucrose, and 36Cl in sheep lung. J Appl Physiol. 1975 Nov;39(5):773–779. doi: 10.1152/jappl.1975.39.5.773. [DOI] [PubMed] [Google Scholar]
  44. Smith G. J., Kramer G. C., Perron P., Nakayama S., Gunther R. A., Holcroft J. W. A comparison of several hypertonic solutions for resuscitation of bled sheep. J Surg Res. 1985 Dec;39(6):517–528. doi: 10.1016/0022-4804(85)90120-9. [DOI] [PubMed] [Google Scholar]
  45. Starling E. H. On the Absorption of Fluids from the Connective Tissue Spaces. J Physiol. 1896 May 5;19(4):312–326. doi: 10.1113/jphysiol.1896.sp000596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Staub N. C. New concepts about the pathophysiology of pulmonary edema. J Thorac Imaging. 1988 Jul;3(3):8–14. doi: 10.1097/00005382-198807000-00006. [DOI] [PubMed] [Google Scholar]
  47. Wickerts C. J., Berg B., Blomqvist H. Influence of positive end-expiratory pressure on extravascular lung water during the formation of experimental hydrostatic pulmonary oedema. Acta Anaesthesiol Scand. 1992 May;36(4):309–317. doi: 10.1111/j.1399-6576.1992.tb03473.x. [DOI] [PubMed] [Google Scholar]
  48. Wickerts C. J., Blomqvist H., Berg B., Rösblad P. G., Hedenstierna G. Furosemide, when used in combination with positive end-expiratory pressure, facilitates the resorption of extravascular lung water in experimental hydrostatic pulmonary oedema. Acta Anaesthesiol Scand. 1991 Nov;35(8):776–783. doi: 10.1111/j.1399-6576.1991.tb03390.x. [DOI] [PubMed] [Google Scholar]
  49. Wickerts C. J., Jakobsson J., Frostell C., Hedenstierna G. Measurement of extravascular lung water by thermal-dye dilution technique: mechanisms of cardiac output dependence. Intensive Care Med. 1990;16(2):115–120. doi: 10.1007/BF02575305. [DOI] [PubMed] [Google Scholar]
  50. Wiener-Kronish J. P., Matthay M. A. Pleural effusions associated with hydrostatic and increased permeability pulmonary edema. Chest. 1988 Apr;93(4):852–858. doi: 10.1378/chest.93.4.852. [DOI] [PubMed] [Google Scholar]
  51. de Felippe J., Jr, Timoner J., Velasco I. T., Lopes O. U., Rocha-e-Silva M., Jr Treatment of refractory hypovolaemic shock by 7.5% sodium chloride injections. Lancet. 1980 Nov 8;2(8202):1002–1004. doi: 10.1016/s0140-6736(80)92157-1. [DOI] [PubMed] [Google Scholar]
  52. van der Zee H., Cooper J. A., Hakim T. S., Malik A. B. Alterations in pulmonary fluid balance induced by positive end-expiratory pressure. Respir Physiol. 1986 May;64(2):125–133. doi: 10.1016/0034-5687(86)90036-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES