Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Jan;460:33–50. doi: 10.1113/jphysiol.1993.sp019457

Ca2+ regulation of the contractile apparatus in canine gastric smooth muscle.

H Ozaki 1, W T Gerthoffer 1, M Hori 1, H Karaki 1, K M Sanders 1, N G Publicover 1
PMCID: PMC1175199  PMID: 7683717

Abstract

1. The relationships between cytosolic Ca2+ ([Ca2+]cyt; expressed as a fluorescence ratio at 400 nm and 500 nm using Indo-1) and contractile force was examined in strips of circular smooth muscles of canine gastric antrum. Rhythmic increases in [Ca2+]cyt were observed and contractions were biphasic. 2. In most muscles (70%), the amplitude of the second phase of the Ca2+ transient was less than or equal to the first phase of the Ca2+ transient, but the second phase of the contraction was much smaller than the first phase, suggesting a decrease in Ca2+ sensitivity during the second contractile phase. In 30% of muscles, the amplitude of the second phase of the Ca2+ transient was 2- to 3-fold greater than the first phase. In these muscles, the second phase of contraction was 10-fold greater than the first phase of contraction. Thus, a non-linear relationship between [Ca2+]cyt and force greatly amplifies force development when [Ca2+]cyt exceeds a threshold level. 3. Acetylcholine (ACh, 0.3-1 microM) increased the amplitudes of Ca2+ transients and basal [Ca2+]cyt between phasic contractions. The increase in basal [Ca2+]cyt did not cause tone to develop. ACh increased the amplitude of Ca2+ transients 2- to 3-fold and this was associated with a 15 to 20-fold increase in the force of phasic contractions. Pentagastrin (0.5 nM) and cholecystokinin octapeptide (CCK, 40 nM) had similar effects on Ca2+ transients and phasic contractions. 4. Bay K 8644 (0.1 microM) and TEA (5 mM) also increased the amplitudes of Ca2+ transients by 2- to 3-fold and phasic contractions by 15- to 30-fold. There was no significant difference observed between the [Ca2+]cyt-force relationships in the presence of agonists (i.e. ACh, pentagastrin and CCK) or when [Ca2+]cyt was increased by Bay K 8644 or TEA. These data suggest that agonist-dependent increases in Ca2+ sensitivity may not significantly regulate the [Ca2+]cyt-force relationship in antral muscles. 5. D600 (5 microM), added during stimulation with ACh (0.3 M), decreased [Ca2+]cyt and force without affecting the [Ca2+]cyt-force relationship. 6. Mechanisms exist for agonist-mediated enhancement of the Ca(2+)-force relationship. In alpha-toxin-permeabilized antrum, ACh (10 microM) with GTP (100 microM) or GTP gamma S (100 microM) increased the Ca(2+)-induced contraction at clamped levels of Ca2+. Phorbol 12,13-dibutyrate (PDBu, 10 microM) also increased the contractile force at a given level of Ca2+.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
33

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Takahashi K., Hiwada K. Effect of calponin on actin-activated myosin ATPase activity. J Biochem. 1990 Nov;108(5):835–838. doi: 10.1093/oxfordjournals.jbchem.a123289. [DOI] [PubMed] [Google Scholar]
  2. Adam L. P., Haeberle J. R., Hathaway D. R. Phosphorylation of caldesmon in arterial smooth muscle. J Biol Chem. 1989 May 5;264(13):7698–7703. [PubMed] [Google Scholar]
  3. Bauer A. J., Publicover N. G., Sanders K. M. Origin and spread of slow waves in canine gastric antral circular muscle. Am J Physiol. 1985 Dec;249(6 Pt 1):G800–G806. doi: 10.1152/ajpgi.1985.249.6.G800. [DOI] [PubMed] [Google Scholar]
  4. Bauer A. J., Reed J. B., Sanders K. M. Slow wave heterogeneity within the circular muscle of the canine gastric antrum. J Physiol. 1985 Sep;366:221–232. doi: 10.1113/jphysiol.1985.sp015793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark T., Ngai P. K., Sutherland C., Gröschel-Stewart U., Walsh M. P. Vascular smooth muscle caldesmon. J Biol Chem. 1986 Jun 15;261(17):8028–8035. [PubMed] [Google Scholar]
  6. DeFeo T. T., Morgan K. G. Calcium-force relationships as detected with aequorin in two different vascular smooth muscles of the ferret. J Physiol. 1985 Dec;369:269–282. doi: 10.1113/jphysiol.1985.sp015900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujii K., Inoue R., Yamanaka K., Yoshitomi T. Effects of calcium antagonists on smooth muscle membranes of the canine stomach. Gen Pharmacol. 1985;16(3):217–221. doi: 10.1016/0306-3623(85)90072-2. [DOI] [PubMed] [Google Scholar]
  8. Gerthoffer W. T., Murphey K. A., Gunst S. J. Aequorin luminescence, myosin phosphorylation, and active stress in tracheal smooth muscle. Am J Physiol. 1989 Dec;257(6 Pt 1):C1062–C1068. doi: 10.1152/ajpcell.1989.257.6.C1062. [DOI] [PubMed] [Google Scholar]
  9. Gerthoffer W. T., Murphey K. A., Mangini J., Boman S., Lattanzio F. A., Jr Myosin phosphorylation and calcium in tonic and phasic contractions of colonic smooth muscle. Am J Physiol. 1991 Jun;260(6 Pt 1):G958–G964. doi: 10.1152/ajpgi.1991.260.6.G958. [DOI] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Haeberle J. R., Hathaway D. R., Smith C. L. Caldesmon content of mammalian smooth muscles. J Muscle Res Cell Motil. 1992 Feb;13(1):81–89. doi: 10.1007/BF01738431. [DOI] [PubMed] [Google Scholar]
  12. Himpens B., Casteels R. Different effects of depolarization and muscarinic stimulation on the Ca2+/force relationship during the contraction-relaxation cycle in the guinea pig ileum. Pflugers Arch. 1990 Apr;416(1-2):28–35. doi: 10.1007/BF00370218. [DOI] [PubMed] [Google Scholar]
  13. Himpens B., Kitazawa T., Somlyo A. P. Agonist-dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch. 1990 Sep;417(1):21–28. doi: 10.1007/BF00370764. [DOI] [PubMed] [Google Scholar]
  14. Himpens B., Matthijs G., Somlyo A. P. Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol. 1989 Jun;413:489–503. doi: 10.1113/jphysiol.1989.sp017665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hohnsbein J., Golenhofen K. Differentiation of the action potential in the smooth muscle of canine gastric antrum using calcium-inhibitory drugs. J Auton Pharmacol. 1985 Mar;5(1):1–12. doi: 10.1111/j.1474-8673.1985.tb00559.x. [DOI] [PubMed] [Google Scholar]
  16. Kamm K. E., Stull J. T. Activation of smooth muscle contraction: relation between myosin phosphorylation and stiffness. Science. 1986 Apr 4;232(4746):80–82. doi: 10.1126/science.3754063. [DOI] [PubMed] [Google Scholar]
  17. Kamm K. E., Stull J. T. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol. 1985;25:593–620. doi: 10.1146/annurev.pa.25.040185.003113. [DOI] [PubMed] [Google Scholar]
  18. Karaki H. Ca2+ localization and sensitivity in vascular smooth muscle. Trends Pharmacol Sci. 1989 Aug;10(8):320–325. doi: 10.1016/0165-6147(89)90066-7. [DOI] [PubMed] [Google Scholar]
  19. Karaki H., Sato K., Ozaki H. Different effects of verapamil on cytosolic Ca2+ and contraction in norepinephrine-stimulated vascular smooth muscle. Jpn J Pharmacol. 1991 Jan;55(1):35–42. doi: 10.1254/jjp.55.35. [DOI] [PubMed] [Google Scholar]
  20. Kelly K. A., Code C. F. Canine gastric pacemaker. Am J Physiol. 1971 Jan;220(1):112–118. doi: 10.1152/ajplegacy.1971.220.1.112. [DOI] [PubMed] [Google Scholar]
  21. Kitazawa T., Kobayashi S., Horiuti K., Somlyo A. V., Somlyo A. P. Receptor-coupled, permeabilized smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem. 1989 Apr 5;264(10):5339–5342. [PubMed] [Google Scholar]
  22. Kobayashi S., Gong M. C., Somlyo A. V., Somlyo A. P. Ca2+ channel blockers distinguish between G protein-coupled pharmacomechanical Ca2+ release and Ca2+ sensitization. Am J Physiol. 1991 Feb;260(2 Pt 1):C364–C370. doi: 10.1152/ajpcell.1991.260.2.C364. [DOI] [PubMed] [Google Scholar]
  23. Morgan K. G., Muir T. C., Szurszewski J. H. The electrical basis for contraction and relaxation in canine fundal smooth muscle. J Physiol. 1981 Feb;311:475–488. doi: 10.1113/jphysiol.1981.sp013599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  25. Ozaki H., Gerthoffer W. T., Publicover N. G., Fusetani N., Sanders K. M. Time-dependent changes in Ca2+ sensitivity during phasic contraction of canine antral smooth muscle. J Physiol. 1991;440:207–224. doi: 10.1113/jphysiol.1991.sp018704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ozaki H., Gerthoffer W. T., Publicover N. G., Sanders K. M. Time-dependent decrease in Ca(2+)-sensitivity in "phasic smooth muscle". Adv Exp Med Biol. 1991;304:481–489. [PubMed] [Google Scholar]
  27. Ozaki H., Kwon S. C., Tajimi M., Karaki H. Changes in cytosolic CA2+ and contraction induced by various stimulants and relaxants in canine tracheal smooth muscle. Pflugers Arch. 1990 Jun;416(4):351–359. doi: 10.1007/BF00370740. [DOI] [PubMed] [Google Scholar]
  28. Ozaki H., Ohyama T., Sato K., Karaki H. Ca2(+)-dependent and independent mechanisms of sustained contraction in vascular smooth muscle of rat aorta. Jpn J Pharmacol. 1990 Mar;52(3):509–512. doi: 10.1254/jjp.52.509. [DOI] [PubMed] [Google Scholar]
  29. Ozaki H., Satoh T., Karaki H., Ishida Y. Regulation of metabolism and contraction by cytoplasmic calcium in the intestinal smooth muscle. J Biol Chem. 1988 Oct 5;263(28):14074–14079. [PubMed] [Google Scholar]
  30. Ozaki H., Stevens R. J., Blondfield D. P., Publicover N. G., Sanders K. M. Simultaneous measurement of membrane potential, cytosolic Ca2+, and tension in intact smooth muscles. Am J Physiol. 1991 May;260(5 Pt 1):C917–C925. doi: 10.1152/ajpcell.1991.260.5.C917. [DOI] [PubMed] [Google Scholar]
  31. Rembold C. M., Murphy R. A. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res. 1988 Sep;63(3):593–603. doi: 10.1161/01.res.63.3.593. [DOI] [PubMed] [Google Scholar]
  32. Sakata K., Ozaki H., Kwon S. C., Karaki H. Effects of endothelin on the mechanical activity and cytosolic calcium level of various types of smooth muscle. Br J Pharmacol. 1989 Oct;98(2):483–492. doi: 10.1111/j.1476-5381.1989.tb12621.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sato K., Ozaki H., Karaki H. Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther. 1988 Jul;246(1):294–300. [PubMed] [Google Scholar]
  34. Somlyo A. P., Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J. 1989 Sep;3(11):2266–2276. doi: 10.1096/fasebj.3.11.2506092. [DOI] [PubMed] [Google Scholar]
  35. Somlyo A. V., Goldman Y. E., Fujimori T., Bond M., Trentham D. R., Somlyo A. P. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol. 1988 Feb;91(2):165–192. doi: 10.1085/jgp.91.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sutherland C., Walsh M. P. Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin. J Biol Chem. 1989 Jan 5;264(1):578–583. [PubMed] [Google Scholar]
  37. Szurszewski J. H. A study of the canine gastric action potential in the presence of tetraethylammonium chloride. J Physiol. 1978 Apr;277:91–102. doi: 10.1113/jphysiol.1978.sp012262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Szurszewski J. H. Mechanism of action of pentagastrin and acetylcholine on the longitudinal muscle of the canine antrum. J Physiol. 1975 Nov;252(2):335–361. doi: 10.1113/jphysiol.1975.sp011147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Takahashi K., Hiwada K., Kokubu T. Isolation and characterization of a 34,000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun. 1986 Nov 26;141(1):20–26. doi: 10.1016/s0006-291x(86)80328-x. [DOI] [PubMed] [Google Scholar]
  40. Takahashi K., Nadal-Ginard B. Molecular cloning and sequence analysis of smooth muscle calponin. J Biol Chem. 1991 Jul 15;266(20):13284–13288. [PubMed] [Google Scholar]
  41. Vogalis F., Publicover N. G., Hume J. R., Sanders K. M. Relationship between calcium current and cytosolic calcium in canine gastric smooth muscle cells. Am J Physiol. 1991 May;260(5 Pt 1):C1012–C1018. doi: 10.1152/ajpcell.1991.260.5.C1012. [DOI] [PubMed] [Google Scholar]
  42. Winder S. J., Walsh M. P. Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem. 1990 Jun 15;265(17):10148–10155. [PubMed] [Google Scholar]
  43. Yagi S., Becker P. L., Fay F. S. Relationship between force and Ca2+ concentration in smooth muscle as revealed by measurements on single cells. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4109–4113. doi: 10.1073/pnas.85.11.4109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. el-Sharkawy T. Y., Morgan K. G., Szurszewski J. H. Intracellular electrical activity of canine and human gastric smooth muscle. J Physiol. 1978 Jun;279:291–307. doi: 10.1113/jphysiol.1978.sp012345. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES