Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Jan;460:231–246. doi: 10.1113/jphysiol.1993.sp019469

Effects of inorganic phosphate analogues on stiffness and unloaded shortening of skinned muscle fibres from rabbit.

P B Chase 1, D A Martyn 1, M J Kushmerick 1, A M Gordon 1
PMCID: PMC1175211  PMID: 8487194

Abstract

1. We examined the effects of aluminofluoride (AlFx) and orthovanadate (Vi), tightly binding analogues of orthophosphate (Pi), on the mechanical properties of glycerinated fibres from rabbit psoas muscle. Maximum Ca(2+)-activated force, stiffness, and unloaded shortening velocity (Vus) were measured under conditions of steady-state inhibition (up to 1 mM of inhibitor) and during the recovery from inhibition. 2. Stiffness was measured using either step or sinusoidal (1 kHz) changes in fibre length. Sarcomere length was monitored continuously by helium-neon laser diffraction during maximum Ca2+ activation. Stiffness was determined from the changes in sarcomere length and the corresponding changes in force. Vus was measured using the slack test method. 3. AlF chi and Vi each reversibly inhibited force, stiffness and Vus. Actively cycling cross-bridges were required for reversal of these inhibitory effects. Recovery from inhibition by AlF chi was 3- to 4-fold slower than that following removal of V1. 4. At various degrees of inhibition, AlF chi and Vi both inhibited steady-state isometric force more than either Vus or stiffness. For both AlF chi and Vi, the relatively greater inhibition of force over stiffness persisted during recovery from steady-state inhibition. We interpret these results to indicate that the cross-bridges with AlF chi or Vi bound are analogous to those which occur early in the cross-bridge cycle.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becherer J. D., Alsenz J., Esparza I., Hack C. E., Lambris J. D. Segment spanning residues 727-768 of the complement C3 sequence contains a neoantigenic site and accommodates the binding of CR1, factor H, and factor B. Biochemistry. 1992 Feb 18;31(6):1787–1794. doi: 10.1021/bi00121a029. [DOI] [PubMed] [Google Scholar]
  2. Brenner B. Technique for stabilizing the striation pattern in maximally calcium-activated skinned rabbit psoas fibers. Biophys J. 1983 Jan;41(1):99–102. doi: 10.1016/S0006-3495(83)84411-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner B., Yu L. C. Equatorial x-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing. Biophys J. 1985 Nov;48(5):829–834. doi: 10.1016/S0006-3495(85)83841-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cecchi G., Colomo F., Lombardi V., Piazzesi G. Stiffness of frog muscle fibres during rise of tension and relaxation in fixed-end or length-clamped tetani. Pflugers Arch. 1987 Jun;409(1-2):39–46. doi: 10.1007/BF00584747. [DOI] [PubMed] [Google Scholar]
  5. Chabre M. Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology. Trends Biochem Sci. 1990 Jan;15(1):6–10. doi: 10.1016/0968-0004(90)90117-t. [DOI] [PubMed] [Google Scholar]
  6. Chase P. B., Kushmerick M. J. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J. 1988 Jun;53(6):935–946. doi: 10.1016/S0006-3495(88)83174-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooke R., Bialek W. Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophys J. 1979 Nov;28(2):241–258. doi: 10.1016/S0006-3495(79)85174-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooke R., Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789–798. doi: 10.1016/S0006-3495(85)83837-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cremo C. R., Grammer J. C., Yount R. G. Direct chemical evidence that serine 180 in the glycine-rich loop of myosin binds to ATP. J Biol Chem. 1989 Apr 25;264(12):6608–6611. [PubMed] [Google Scholar]
  10. Dantzig J. A., Goldman Y. E. Suppression of muscle contraction by vanadate. Mechanical and ligand binding studies on glycerol-extracted rabbit fibers. J Gen Physiol. 1985 Sep;86(3):305–327. doi: 10.1085/jgp.86.3.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferenczi M. A., Goldman Y. E., Simmons R. M. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J Physiol. 1984 May;350:519–543. doi: 10.1113/jphysiol.1984.sp015216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ford L. E., Huxley A. F., Simmons R. M. Tension transients during the rise of tetanic tension in frog muscle fibres. J Physiol. 1986 Mar;372:595–609. doi: 10.1113/jphysiol.1986.sp016027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ford L. E., Huxley A. F., Simmons R. M. The relation between stiffness and filament overlap in stimulated frog muscle fibres. J Physiol. 1981 Feb;311:219–249. doi: 10.1113/jphysiol.1981.sp013582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldman Y. E. Measurement of sarcomere shortening in skinned fibers from frog muscle by white light diffraction. Biophys J. 1987 Jul;52(1):57–68. doi: 10.1016/S0006-3495(87)83188-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goodno C. C. Inhibition of myosin ATPase by vanadate ion. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2620–2624. doi: 10.1073/pnas.76.6.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goodno C. C., Taylor E. W. Inhibition of actomyosin ATPase by vanadate. Proc Natl Acad Sci U S A. 1982 Jan;79(1):21–25. doi: 10.1073/pnas.79.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herzig J. W., Peterson J. W., Rüegg J. C., Solaro R. J. Vanadate and phosphate ions reduce tension and increase cross-bridge kinetics in chemically skinned heart muscle. Biochim Biophys Acta. 1981 Jan 21;672(2):191–196. doi: 10.1016/0304-4165(81)90392-5. [DOI] [PubMed] [Google Scholar]
  19. Hibberd M. G., Dantzig J. A., Trentham D. R., Goldman Y. E. Phosphate release and force generation in skeletal muscle fibers. Science. 1985 Jun 14;228(4705):1317–1319. doi: 10.1126/science.3159090. [DOI] [PubMed] [Google Scholar]
  20. Hibberd M. G., Trentham D. R. Relationships between chemical and mechanical events during muscular contraction. Annu Rev Biophys Biophys Chem. 1986;15:119–161. doi: 10.1146/annurev.bb.15.060186.001003. [DOI] [PubMed] [Google Scholar]
  21. Homsher E., Millar N. C. Caged compounds and striated muscle contraction. Annu Rev Physiol. 1990;52:875–896. doi: 10.1146/annurev.ph.52.030190.004303. [DOI] [PubMed] [Google Scholar]
  22. Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
  23. Issartel J. P., Dupuis A., Morat C., Girardet J. L. Fluoride, beryllium and ADP combine as a ternary complex in aqueous solution as revealed by a multinuclear NMR study. Eur Biophys J. 1991;20(2):115–126. doi: 10.1007/BF00186260. [DOI] [PubMed] [Google Scholar]
  24. Iwazumi T., Pollack G. H. On-line measurement of sarcomere length from diffraction patterns in muscle. IEEE Trans Biomed Eng. 1979 Feb;26(2):86–93. doi: 10.1109/tbme.1979.326514. [DOI] [PubMed] [Google Scholar]
  25. Martyn D. A., Gordon A. M. Force and stiffness in glycerinated rabbit psoas fibers. Effects of calcium and elevated phosphate. J Gen Physiol. 1992 May;99(5):795–816. doi: 10.1085/jgp.99.5.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martyn D. A., Gordon A. M. Length and myofilament spacing-dependent changes in calcium sensitivity of skeletal fibres: effects of pH and ionic strength. J Muscle Res Cell Motil. 1988 Oct;9(5):428–445. doi: 10.1007/BF01774069. [DOI] [PubMed] [Google Scholar]
  27. Pate E., Cooke R. Addition of phosphate to active muscle fibers probes actomyosin states within the powerstroke. Pflugers Arch. 1989 May;414(1):73–81. doi: 10.1007/BF00585629. [DOI] [PubMed] [Google Scholar]
  28. Ringel I., Peyser Y. M., Muhlrad A. 51V NMR study of vanadate binding to myosin and its subfragment 1. Biochemistry. 1990 Sep 25;29(38):9091–9096. doi: 10.1021/bi00490a029. [DOI] [PubMed] [Google Scholar]
  29. Rüdel R., Zite-Ferenczy F. Do laser diffraction studies on striated muscle indicate stepwise sarcomere shortening? Nature. 1979 Apr 5;278(5704):573–575. doi: 10.1038/278573a0. [DOI] [PubMed] [Google Scholar]
  30. Smith S. J., Eisenberg E. A comparison of the effect of vanadate on the binding of myosin-subfragment-1.ADP to actin and on actomyosin subfragment 1 ATPase activity. Eur J Biochem. 1990 Oct 5;193(1):69–73. doi: 10.1111/j.1432-1033.1990.tb19305.x. [DOI] [PubMed] [Google Scholar]
  31. Solaro R. J., Holroyde M. J., Herzig J. W., Peterson J. Cardiac relaxation and myofibrillar interactions with phosphate and vanadate. Eur Heart J. 1980;Suppl A:21–27. doi: 10.1093/eurheartj/1.suppl_1.21. [DOI] [PubMed] [Google Scholar]
  32. Sweeney H. L., Corteselli S. A., Kushmerick M. J. Measurements on permeabilized skeletal muscle fibers during continuous activation. Am J Physiol. 1987 May;252(5 Pt 1):C575–C580. doi: 10.1152/ajpcell.1987.252.5.C575. [DOI] [PubMed] [Google Scholar]
  33. Umazume Y., Onodera S., Higuchi H. Width and lattice spacing in radially compressed frog skinned muscle fibres at various pH values, magnesium ion concentrations and ionic strengths. J Muscle Res Cell Motil. 1986 Jun;7(3):251–258. doi: 10.1007/BF01753558. [DOI] [PubMed] [Google Scholar]
  34. Webb M. R., Hibberd M. G., Goldman Y. E., Trentham D. R. Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle. Evidence for Pi binding to a force-generating state. J Biol Chem. 1986 Nov 25;261(33):15557–15564. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES