Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Jan;460:641–655. doi: 10.1113/jphysiol.1993.sp019491

Fluctuations in blood flow to acral skin in humans: connection with heart rate and blood pressure variability.

K Lossius 1, M Eriksen 1, L Walløe 1
PMCID: PMC1175233  PMID: 8487211

Abstract

1. Spontaneous fluctuations in blood flow in arteries supplying acral skin were investigated with Doppler ultrasound in human subjects. Finger blood pressure, heart rate (HR) and cardiac output were measured simultaneously and noninvasively. 2. Synchronous fluctuations in flow were found in arteries supplying the hands and feet. The fluctuations were larger and more rapid than the flow variations which have been demonstrated with other methods. The magnitude of the total flow fluctuations in the hands and feet was estimated to be 5-10% of cardiac output in resting subjects. This range of flow fluctuations is made possible by spontaneous opening and closing of skin arteriovenous anastomoses (AVAs). 3. The fluctuations in skin blood flow were accompanied by inverse fluctuations in mean blood pressure (MAP). The power spectra of skin vascular conductance and MAP both contained maximum intensity at low frequencies, below 0.15 Hz, with high coherence. 4. The central circulatory events connected with the skin blood flow fluctuations were calculated from the experimental data with the use of transfer function analysis. There was a rise in HR, cardiac output and MAP starting 1-4 s before a cutaneous vasoconstriction. This indicates that the HR and MAP responses are not only passive effects of changes in peripheral resistance, but are the result of a simultaneous activation of the peripheral vascular and cardiac efferent branches of the autonomic nervous system. The HR and MAP responses are then modified, probably by baroreceptor activation.

Full text

PDF
641

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger R. D., Saul J. P., Cohen R. J. Transfer function analysis of autonomic regulation. I. Canine atrial rate response. Am J Physiol. 1989 Jan;256(1 Pt 2):H142–H152. doi: 10.1152/ajpheart.1989.256.1.H142. [DOI] [PubMed] [Google Scholar]
  2. Bini G., Hagbarth K. E., Hynninen P., Wallin B. G. Regional similarities and differences in thermoregulatory vaso- and sudomotor tone. J Physiol. 1980 Sep;306:553–565. doi: 10.1113/jphysiol.1980.sp013414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Böck P. Feinstruktur und Innervation arteriovenöser Anastomosen (AVAs). Wien Klin Wochenschr. 1980 Mar 14;92(6):179–187. [PubMed] [Google Scholar]
  4. Challis R. E., Kitney R. I. Biomedical signal processing (in four parts). Part 2. The frequency transforms and their inter-relationships. Med Biol Eng Comput. 1991 Jan;29(1):1–17. doi: 10.1007/BF02446290. [DOI] [PubMed] [Google Scholar]
  5. Coffman J. D. Total and nutritional blood flow in the finger. Clin Sci. 1972 Mar;42(3):243–250. doi: 10.1042/cs0420243. [DOI] [PubMed] [Google Scholar]
  6. Eriksen M., Walløe L. Improved method for cardiac output determination in man using ultrasound Doppler technique. Med Biol Eng Comput. 1990 Nov;28(6):555–560. doi: 10.1007/BF02442607. [DOI] [PubMed] [Google Scholar]
  7. Hagbarth K. E., Hallin R. G., Hongell A., Torebjörk H. E., Wallin B. G. General characteristics of sympathetic activity in human skin nerves. Acta Physiol Scand. 1972 Feb;84(2):164–176. doi: 10.1111/j.1748-1716.1972.tb05167.x. [DOI] [PubMed] [Google Scholar]
  8. Hales J. R., Fawcett A. A., Bennett J. W., Needham A. D. Thermal control of blood flow through capillaries and arteriovenous anastomoses in skin of sheep. Pflugers Arch. 1978 Dec 15;378(1):55–63. doi: 10.1007/BF00581958. [DOI] [PubMed] [Google Scholar]
  9. Hyndman B. W., Kitney R. I., Sayers B. M. Spontaneous rhythms in physiological control systems. Nature. 1971 Oct 1;233(5318):339–341. doi: 10.1038/233339a0. [DOI] [PubMed] [Google Scholar]
  10. Imholz B. P., Settels J. J., van der Meiracker A. H., Wesseling K. H., Wieling W. Non-invasive continuous finger blood pressure measurement during orthostatic stress compared to intra-arterial pressure. Cardiovasc Res. 1990 Mar;24(3):214–221. doi: 10.1093/cvr/24.3.214. [DOI] [PubMed] [Google Scholar]
  11. Imholz B. P., van Montfrans G. A., Settels J. J., van der Hoeven G. M., Karemaker J. M., Wieling W. Continuous non-invasive blood pressure monitoring: reliability of Finapres device during the Valsalva manoeuvre. Cardiovasc Res. 1988 Jun;22(6):390–397. doi: 10.1093/cvr/22.6.390. [DOI] [PubMed] [Google Scholar]
  12. Janbu T. Blood velocities in the dorsal pedis and radial arteries during labour. Br J Obstet Gynaecol. 1989 Jan;96(1):70–79. doi: 10.1111/j.1471-0528.1989.tb01579.x. [DOI] [PubMed] [Google Scholar]
  13. PRICHARD M. M., DANIEL P. M. Arteriovenous anastomoses in the human external ear. J Anat. 1956 Jul;90(3):309–317. [PMC free article] [PubMed] [Google Scholar]
  14. Parati G., Casadei R., Groppelli A., Di Rienzo M., Mancia G. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension. 1989 Jun;13(6 Pt 1):647–655. doi: 10.1161/01.hyp.13.6.647. [DOI] [PubMed] [Google Scholar]
  15. SHERMAN J. L., Jr NORMAL ARTERIOVENOUS ANASTOMOSES. Medicine (Baltimore) 1963 Jul;42:247–267. doi: 10.1097/00005792-196307000-00001. [DOI] [PubMed] [Google Scholar]
  16. Thoresen M., Walløe L. Skin blood flow in humans as a function of environmental temperature measured by ultrasound. Acta Physiol Scand. 1980 Jul;109(3):333–341. doi: 10.1111/j.1748-1716.1980.tb06604.x. [DOI] [PubMed] [Google Scholar]
  17. Wesseling K. H., Settels J. J., van der Hoeven G. M., Nijboer J. A., Butijn M. W., Dorlas J. C. Effects of peripheral vasoconstriction on the measurement of blood pressure in a finger. Cardiovasc Res. 1985 Mar;19(3):139–145. doi: 10.1093/cvr/19.3.139. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES