Abstract
1. Positron emission tomographic (PET) imaging of regional cerebral blood flow (rCBF), using a new 3-dimensional technique of data collection, was used to identify areas of neuronal activation associated with volitional inspiration and separately with volitional expiration in five normal male subjects. A comparison of the activated areas was also undertaken to isolate regions specific for one or other active task. 2. Scans were performed during intravenous infusion of H2(15)O under conditions of (a) volitional inspiration with passive expiration, (b) passive inspiration with volitional expiration and (c) passive inspiration with passive expiration. Four measurements in these three conditions were performed in each subject. Breathing pattern was well matched between conditions. 3. Regional increases in brain blood flow, due to increased neural activity associated with either active inspiration or active expiration, were derived using a pixel by pixel comparison of images obtained during the volitional and passive ventilation phases. Data were pooled from all runs in all subjects and were then processed to detect statistically significant (P < 0.05) increases in rCBF comparing active inspiration with passive inspiration and active expiration with passive expiration. 4. During active inspiration significant increases in rCBF were found bilaterally in the primary motor cortex dorsally just lateral to the vertex, in the supplementary motor area, in the right lateral pre-motor cortex and in the left ventrolateral thalamus. 5. In active expiration significant increases in rCBF were found in the right and left primary motor cortices dorsally just lateral to the vertex, the right and left primary motor cortices more ventrolaterally, the supplementary motor area, the right lateral pre-motor cortex, the ventrolateral thalamus bilaterally, and the cerebellum. 6. Using this modified and more sensitive PET technique, these findings essentially replicate those for volitional inspiration obtained in a previous study. For volitional expiration the areas activated are more extensive, but overlap with those involved in volitional inspiration. 7. The technique used has been successful in demonstrating the regions of the brain involved in the generation of volitional breathing, and probably in the volitional modulation of automatic breathing patterns such as would be required for the production of speech.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey D. L., Jones T., Spinks T. J. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med. 1991;18(6):374–379. doi: 10.1007/BF02258426. [DOI] [PubMed] [Google Scholar]
- Colebatch J. G., Adams L., Murphy K., Martin A. J., Lammertsma A. A., Tochon-Danguy H. J., Clark J. C., Friston K. J., Guz A. Regional cerebral blood flow during volitional breathing in man. J Physiol. 1991 Nov;443:91–103. doi: 10.1113/jphysiol.1991.sp018824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins R. C. Basic aspects of functional brain metabolism. Ciba Found Symp. 1991;163:6–22. [PubMed] [Google Scholar]
- Datta A. K., Shea S. A., Horner R. L., Guz A. The influence of induced hypocapnia and sleep on the endogenous respiratory rhythm in humans. J Physiol. 1991;440:17–33. doi: 10.1113/jphysiol.1991.sp018693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVito J. L., Anderson M. E. An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res. 1982;46(1):107–117. doi: 10.1007/BF00238104. [DOI] [PubMed] [Google Scholar]
- Fox P. T., Mintun M. A. Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity. J Nucl Med. 1989 Feb;30(2):141–149. [PubMed] [Google Scholar]
- Friston K. J., Frith C. D., Liddle P. F., Dolan R. J., Lammertsma A. A., Frackowiak R. S. The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab. 1990 Jul;10(4):458–466. doi: 10.1038/jcbfm.1990.88. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991 Jul;11(4):690–699. doi: 10.1038/jcbfm.1991.122. [DOI] [PubMed] [Google Scholar]
- Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. Plastic transformation of PET images. J Comput Assist Tomogr. 1991 Jul-Aug;15(4):634–639. doi: 10.1097/00004728-199107000-00020. [DOI] [PubMed] [Google Scholar]
- Lammertsma A. A., Cunningham V. J., Deiber M. P., Heather J. D., Bloomfield P. M., Nutt J., Frackowiak R. S., Jones T. Combination of dynamic and integral methods for generating reproducible functional CBF images. J Cereb Blood Flow Metab. 1990 Sep;10(5):675–686. doi: 10.1038/jcbfm.1990.121. [DOI] [PubMed] [Google Scholar]
- Maskill D., Murphy K., Mier A., Owen M., Guz A. Motor cortical representation of the diaphragm in man. J Physiol. 1991 Nov;443:105–121. doi: 10.1113/jphysiol.1991.sp018825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazziotta J. C., Huang S. C., Phelps M. E., Carson R. E., MacDonald N. S., Mahoney K. A noninvasive positron computed tomography technique using oxygen-15--labeled water for the evaluation of neurobehavioral task batteries. J Cereb Blood Flow Metab. 1985 Mar;5(1):70–78. doi: 10.1038/jcbfm.1985.10. [DOI] [PubMed] [Google Scholar]
- Mintun M. A., Fox P. T., Raichle M. E. A highly accurate method of localizing regions of neuronal activation in the human brain with positron emission tomography. J Cereb Blood Flow Metab. 1989 Feb;9(1):96–103. doi: 10.1038/jcbfm.1989.13. [DOI] [PubMed] [Google Scholar]
- Mitz A. R., Wise S. P. The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci. 1987 Apr;7(4):1010–1021. doi: 10.1523/JNEUROSCI.07-04-01010.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy K., Mier A., Adams L., Guz A. Putative cerebral cortical involvement in the ventilatory response to inhaled CO2 in conscious man. J Physiol. 1990 Jan;420:1–18. doi: 10.1113/jphysiol.1990.sp017898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pardo J. V., Fox P. T., Raichle M. E. Localization of a human system for sustained attention by positron emission tomography. Nature. 1991 Jan 3;349(6304):61–64. doi: 10.1038/349061a0. [DOI] [PubMed] [Google Scholar]
- Passingham R. E. Two cortical systems for directing movement. Ciba Found Symp. 1987;132:151–164. doi: 10.1002/9780470513545.ch10. [DOI] [PubMed] [Google Scholar]
- Petersen S. E., Fox P. T., Posner M. I., Mintun M., Raichle M. E. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988 Feb 18;331(6157):585–589. doi: 10.1038/331585a0. [DOI] [PubMed] [Google Scholar]
- Roy C. S., Sherrington C. S. On the Regulation of the Blood-supply of the Brain. J Physiol. 1890 Jan;11(1-2):85–158.17. doi: 10.1113/jphysiol.1890.sp000321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shea S. A., Walter J., Pelley C., Murphy K., Guz A. The effect of visual and auditory stimuli upon resting ventilation in man. Respir Physiol. 1987 Jun;68(3):345–357. doi: 10.1016/s0034-5687(87)80019-1. [DOI] [PubMed] [Google Scholar]
- Spinks T. J., Jones T., Bailey D. L., Townsend D. W., Grootoonk S., Bloomfield P. M., Gilardi M. C., Casey M. E., Sipe B., Reed J. Physical performance of a positron tomograph for brain imaging with retractable septa. Phys Med Biol. 1992 Aug;37(8):1637–1655. doi: 10.1088/0031-9155/37/8/002. [DOI] [PubMed] [Google Scholar]
- Tobin M. J., Perez W., Guenther S. M., D'Alonzo G., Dantzker D. R. Breathing pattern and metabolic behavior during anticipation of exercise. J Appl Physiol (1985) 1986 Apr;60(4):1306–1312. doi: 10.1152/jappl.1986.60.4.1306. [DOI] [PubMed] [Google Scholar]
- Townsend D. W. Optimization of signal in positron emission tomography scans: present and future developments. Ciba Found Symp. 1991;163:57–75. doi: 10.1002/9780470514184.ch4. [DOI] [PubMed] [Google Scholar]
- Wise R., Chollet F., Hadar U., Friston K., Hoffner E., Frackowiak R. Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain. 1991 Aug;114(Pt 4):1803–1817. doi: 10.1093/brain/114.4.1803. [DOI] [PubMed] [Google Scholar]
