Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Feb;461:501–511. doi: 10.1113/jphysiol.1993.sp019525

Effect of endothelin-3 on vasopressin release in vitro and water excretion in vivo in Long-Evans rats.

N F Rossi 1
PMCID: PMC1175269  PMID: 8350273

Abstract

1. The endothlins (ETs) are a family of homologous peptides originally isolated and purified from cultured porcine endothelial cells. Although initial studies focused on the ETs as potent vasoconstrictor substances, recent findings support a role for ET in vasopressin (AVP) secretion and action. We used cultured explants of the hypothalamo-neurohypophysial complex (HNC) to examine the effects of ET-3 on AVP release. 2. ET-3 produced a significant and concentration-dependent rise in AVP release from the explants of Long-Evans rats at 48 h, independent of medium osmolality. AVP release during two sequential control periods did not differ, and osmotically stimulated AVP release was comparable to that exhibited by HNC explants from Sprague-Dawley rats. ET-3 (1 nM) induced a 3-fold rise in AVP that was completely blocked by rabbit antiET serum, which did not alter basal AVP secretion. 3. Clearance experiments were performed in anaesthetized water-loaded rats given a non-pressor dose of ET-3 (0.40 nmol (kg body weight)-1 intravenously). The means of body weight, arterial blood pressure, plasma Na+ concentrations, and plasma osmolalities did not differ between the first and second periods nor among the groups. Despite no changes in renal plasma flow and inulin clearance, free water clearance significantly increased in the ET-treated group. This response could not be attributed to changes in osmolal clearances or Na+ reabsorption. The concurrent administration of antiET serum not only blocked this effect, but was associated with the free water clearance falling significantly below the pretreatment level. 4. Taken together, our in vivo and in vitro findings support the hypothesis that ET-3 stimulates AVP secretion. Furthermore, our data are consistent with the site of action of ET-3 residing within the blood-brain barrier, though an independent effect by a higher concentration of ET at neural loci outside the barrier cannot be totally excluded. Finally, the subpressor dose of ET-3 amplifies free water excretion independent of systemic and renal haemodynamics, Na+ excretion, osmolal clearance, or circulating AVP levels.

Full text

PDF
501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Churchill P. C., Bidani A. K., Schwartz M. M. Renal effects of endotoxin in the male rat. Am J Physiol. 1987 Aug;253(2 Pt 2):F244–F250. doi: 10.1152/ajprenal.1987.253.2.F244. [DOI] [PubMed] [Google Scholar]
  2. Davison J. M., Gilmore E. A., Dürr J., Robertson G. L., Lindheimer M. D. Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. Am J Physiol. 1984 Jan;246(1 Pt 2):F105–F109. doi: 10.1152/ajprenal.1984.246.1.F105. [DOI] [PubMed] [Google Scholar]
  3. Goetz K. L., Wang B. C., Madwed J. B., Zhu J. L., Leadley R. J., Jr Cardiovascular, renal, and endocrine responses to intravenous endothelin in conscious dogs. Am J Physiol. 1988 Dec;255(6 Pt 2):R1064–R1068. doi: 10.1152/ajpregu.1988.255.6.R1064. [DOI] [PubMed] [Google Scholar]
  4. Kohan D. E. Endothelin synthesis by rabbit renal tubule cells. Am J Physiol. 1991 Aug;261(2 Pt 2):F221–F226. doi: 10.1152/ajprenal.1991.261.2.F221. [DOI] [PubMed] [Google Scholar]
  5. Koseki C., Imai M., Hirata Y., Yanagisawa M., Masaki T. Binding sites for endothelin-1 in rat tissues: an autoradiographic study. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S153–S154. doi: 10.1097/00005344-198900135-00040. [DOI] [PubMed] [Google Scholar]
  6. MacCumber M. W., Ross C. A., Glaser B. M., Snyder S. H. Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7285–7289. doi: 10.1073/pnas.86.18.7285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MacCumber M. W., Ross C. A., Snyder S. H. Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2359–2363. doi: 10.1073/pnas.87.6.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Madeddu P., Troffa C., Glorioso N., Pazzola A., Soro A., Manunta P., Tonolo G., Demontis M. P., Varoni M. V., Anania V. Effect of endothelin on regional hemodynamics and renal function in awake normotensive rats. J Cardiovasc Pharmacol. 1989 Dec;14(6):818–825. doi: 10.1097/00005344-198912000-00004. [DOI] [PubMed] [Google Scholar]
  9. Matsumoto H., Suzuki N., Onda H., Fujino M. Abundance of endothelin-3 in rat intestine, pituitary gland and brain. Biochem Biophys Res Commun. 1989 Oct 16;164(1):74–80. doi: 10.1016/0006-291x(89)91684-7. [DOI] [PubMed] [Google Scholar]
  10. Miller T. R., Handelman W. A., Arnold P. E., McDonald K. M., Molinoff P. B., Schrier R. W. Effect of central catecholamine depletion on the osmotic and nonosmotic stimulation of vasopressin (antidiuretic hormone) in the rat. J Clin Invest. 1979 Dec;64(6):1599–1607. doi: 10.1172/JCI109621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakamoto H., Suzuki H., Murakami M., Kageyama Y., Naitoh M., Sakamaki Y., Ohishi A., Saruta T. Different effects of low and high doses of endothelin on haemodynamics and hormones in the normotensive conscious dog. J Hypertens. 1991 Apr;9(4):337–344. doi: 10.1097/00004872-199104000-00005. [DOI] [PubMed] [Google Scholar]
  12. Nishimura M., Takahashi H., Matsusawa M., Ikegaki I., Nakanishi T., Hirabayashi M., Yoshimura M. Intracerebroventricular injections of endothelin increase arterial pressure in conscious rats. Jpn Circ J. 1990 Jun;54(6):662–670. doi: 10.1253/jcj.54.662. [DOI] [PubMed] [Google Scholar]
  13. Nishimura M., Takahashi H., Matsusawa M., Ikegaki I., Sakamoto M., Nakanishi T., Hirabayashi M., Yoshimura M. Chronic intracerebroventricular infusions of endothelin elevate arterial pressure in rats. J Hypertens. 1991 Jan;9(1):71–76. doi: 10.1097/00004872-199101000-00011. [DOI] [PubMed] [Google Scholar]
  14. Oishi R., Nonoguchi H., Tomita K., Marumo F. Endothelin-1 inhibits AVP-stimulated osmotic water permeability in rat inner medullary collecting duct. Am J Physiol. 1991 Dec;261(6 Pt 2):F951–F956. doi: 10.1152/ajprenal.1991.261.6.F951. [DOI] [PubMed] [Google Scholar]
  15. Perico N., Cornejo R. P., Benigni A., Malanchini B., Ladny J. R., Remuzzi G. Endothelin induces diuresis and natriuresis in the rat by acting on proximal tubular cells through a mechanism mediated by lipoxygenase products. J Am Soc Nephrol. 1991 Jul;2(1):57–69. doi: 10.1681/ASN.V2157. [DOI] [PubMed] [Google Scholar]
  16. Perico N., Dadan J., Remuzzi G. Endothelin mediates the renal vasoconstriction induced by cyclosporine in the rat. J Am Soc Nephrol. 1990 Jul;1(1):76–83. [PubMed] [Google Scholar]
  17. Rossi N. F., Cadnapaphornchai P. Disordered water metabolism: hyponatremia. Crit Care Clin. 1987 Oct;3(4):759–777. [PubMed] [Google Scholar]
  18. Rossi N. F., Schrier R. W. Anti-calmodulin agents affect osmotic and angiotensin II-induced vasopressin release. Am J Physiol. 1989 Apr;256(4 Pt 1):E516–E523. doi: 10.1152/ajpendo.1989.256.4.E516. [DOI] [PubMed] [Google Scholar]
  19. Rubanyi G. M., Botelho L. H. Endothelins. FASEB J. 1991 Sep;5(12):2713–2720. doi: 10.1096/fasebj.5.12.1916094. [DOI] [PubMed] [Google Scholar]
  20. Shichiri M., Hirata Y., Kanno K., Ohta K., Emori T., Marumo F. Effect of endothelin-1 on release of arginine-vasopressin from perifused rat hypothalamus. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1332–1337. doi: 10.1016/0006-291x(89)91124-8. [DOI] [PubMed] [Google Scholar]
  21. Simonson M. S., Dunn M. J. Cellular signaling by peptides of the endothelin gene family. FASEB J. 1990 Sep;4(12):2989–3000. doi: 10.1096/fasebj.4.12.2168326. [DOI] [PubMed] [Google Scholar]
  22. Sladek C. D., Knigge K. M. Cholinergic stimulation of vasopressin release from the rat hypothalamo-neurohypophyseal system. Endocrinology. 1977 Aug;101(2):411–420. doi: 10.1210/endo-101-2-411. [DOI] [PubMed] [Google Scholar]
  23. Tomita K., Nonoguchi H., Marumo F. Effects of endothelin on peptide-dependent cyclic adenosine monophosphate accumulation along the nephron segments of the rat. J Clin Invest. 1990 Jun;85(6):2014–2018. doi: 10.1172/JCI114667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilkes B. M., Susin M., Mento P. F., Macica C. M., Girardi E. P., Boss E., Nord E. P. Localization of endothelin-like immunoreactivity in rat kidneys. Am J Physiol. 1991 Jun;260(6 Pt 2):F913–F920. doi: 10.1152/ajprenal.1991.260.6.F913. [DOI] [PubMed] [Google Scholar]
  25. Yamashita Y., Yukimura T., Miura K., Okumura M., Yamamoto K. Effects of endothelin-3 on renal functions. J Pharmacol Exp Ther. 1991 Dec;259(3):1256–1260. [PubMed] [Google Scholar]
  26. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  27. Yoshimi H., Hirata Y., Fukuda Y., Kawano Y., Emori T., Kuramochi M., Omae T., Marumo F. Regional distribution of immunoreactive endothelin in rats. Peptides. 1989 Jul-Aug;10(4):805–808. doi: 10.1016/0196-9781(89)90117-4. [DOI] [PubMed] [Google Scholar]
  28. Yoshizawa T., Shinmi O., Giaid A., Yanagisawa M., Gibson S. J., Kimura S., Uchiyama Y., Polak J. M., Masaki T., Kanazawa I. Endothelin: a novel peptide in the posterior pituitary system. Science. 1990 Jan 26;247(4941):462–464. doi: 10.1126/science.2405487. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES