Abstract
1. Mechanical loading of cartilaginous tissue generates an increase in the concentration of cations in the extracellular matrix. This includes a decrease of the extracellular pH (pHo), which is known to affect the intracellular pH (pHi), thereby modifying the intracellular metabolism. Thus, the regulation of pHi is essential for the physiological function of cartilage. The fluorescent pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (BCECF AM) was employed in order to assess the mechanisms responsible for control of the pHi in an embryonic avian chondrocyte cell suspension. 2. Steady-state pHi in the absence of physiological HCO3- was 7.15 +/- 0.01 pH units as compared to a pHi of 6.94 +/- 0.02 pH units in its presence (P < 0.01). The intrinsic buffering power of chondrocytes (beta i) was 38.9 mM/pH unit and the total buffering capacity (beta T) was 65.8 mM/pH unit. 3. Cells maintained in a Hepes-buffered solution were exposed to an intracellular acid load by the NH4+ prepulse technique (20 mM NH4Cl). The initial rate of pHi recovery was 0.106 pH units/min (n = 18). Amiloride (0.33 mM), an inhibitor of the Na(+)-H+ exchanger, or replacement of external sodium [Na+]o with choline induced a 60% inhibition of the recovery rate, indicating a predominant involvement of this antiporter in the response to intracellular acidification. 4. H(+)-ATPase inhibitors (oligomycin 20 micrograms/ml; N,N;-dicyclohexylcarbodiimide (DCC), 0.5 mM; N-ethylmaleimide (NEM), 0.25 mM) and iodomycin (2 mM), a metabolic cell suppressor, reduced acid extrusion by 25% as measured by the NH4Cl prepulse in Hepes-bathed cells. 5. Chondrocytes transferred from a Hepes-buffered solution to a 5% CO2-25 mM HCO3- medium (HCO3- solution) underwent a pHi decrease of approximately 0.20 pH units, followed by a regulatory alkalinizing response of 0.118 pH units/min. The Na(+)-H+ exchanger was responsible for only 15% of this alkalinization (amiloride, 0.33 mM), in contrast to its primary role in HCO(3-)-free solution. 6. The activity of a Na(+)-dependent Cl(-)-HCO3- exchanger in physiological HCO3- solution was estimated by addition of the inhibitors 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS; 0.5 mM) or diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS; 100 microM) and by the suspensions of chondrocytes in a Na(+)-free solution. Acidification performed under these conditions resulted in a 45% inhibition of the recovery rate as compared to control rates.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpern R. J. Cell mechanisms of proximal tubule acidification. Physiol Rev. 1990 Jan;70(1):79–114. doi: 10.1152/physrev.1990.70.1.79. [DOI] [PubMed] [Google Scholar]
- Benya P. D., Shaffer J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982 Aug;30(1):215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
- Bidani A., Brown S. E., Heming T. A., Gurich R., Dubose T. D., Jr Cytoplasmic pH in pulmonary macrophages: recovery from acid load is Na+ independent and NEM sensitive. Am J Physiol. 1989 Jul;257(1 Pt 1):C65–C76. doi: 10.1152/ajpcell.1989.257.1.C65. [DOI] [PubMed] [Google Scholar]
- Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport. J Gen Physiol. 1983 Jan;81(1):53–94. doi: 10.1085/jgp.81.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boron W. F., Russell J. M. Stoichiometry and ion dependencies of the intracellular-pH-regulating mechanism in squid giant axons. J Gen Physiol. 1983 Mar;81(3):373–399. doi: 10.1085/jgp.81.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckler K. J., Vaughan-Jones R. D., Peers C., Nye P. C. Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat. J Physiol. 1991 May;436:107–129. doi: 10.1113/jphysiol.1991.sp018542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carr M. E., Jr, Hadler N. M. Permeability of hyaluronic acid solutions. The effects of matrix concentration, calcium, and pH. Arthritis Rheum. 1980 Dec;23(12):1371–1375. doi: 10.1002/art.1780231207. [DOI] [PubMed] [Google Scholar]
- Curci S., Debellis L., Frömter E. Evidence for rheogenic sodium bicarbonate cotransport in the basolateral membrane of oxyntic cells of frog gastric fundus. Pflugers Arch. 1987 May;408(5):497–504. doi: 10.1007/BF00585075. [DOI] [PubMed] [Google Scholar]
- Dascalu A., Nevo Z., Korenstein R. Regulation of the Na+/H+ exchanger under conditions of abolished proton gradient: isosmotic and hyperosmotic stimulation. FEBS Lett. 1991 May 6;282(2):305–309. doi: 10.1016/0014-5793(91)80501-s. [DOI] [PubMed] [Google Scholar]
- De Witt M. T., Handley C. J., Oakes B. W., Lowther D. A. In vitro response of chondrocytes to mechanical loading. The effect of short term mechanical tension. Connect Tissue Res. 1984;12(2):97–109. doi: 10.3109/03008208408992775. [DOI] [PubMed] [Google Scholar]
- Ganz M. B., Boyarsky G., Sterzel R. B., Boron W. F. Arginine vasopressin enhances pHi regulation in the presence of HCO3- by stimulating three acid-base transport systems. Nature. 1989 Feb 16;337(6208):648–651. doi: 10.1038/337648a0. [DOI] [PubMed] [Google Scholar]
- Gillespie J. I., Greenwell J. R. Changes in intracellular pH and pH regulating mechanisms in somitic cells of the early chick embryo: a study using fluorescent pH-sensitive dye. J Physiol. 1988 Nov;405:385–395. doi: 10.1113/jphysiol.1988.sp017338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray M. L., Pizzanelli A. M., Grodzinsky A. J., Lee R. C. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res. 1988;6(6):777–792. doi: 10.1002/jor.1100060602. [DOI] [PubMed] [Google Scholar]
- Hall A. C., Urban J. P., Gehl K. A. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res. 1991 Jan;9(1):1–10. doi: 10.1002/jor.1100090102. [DOI] [PubMed] [Google Scholar]
- Melching L. I., Roughley P. J. Studies on the interaction of newly secreted proteoglycan subunits with hyaluronate in human articular cartilage. Biochim Biophys Acta. 1990 Jul 20;1035(1):20–28. doi: 10.1016/0304-4165(90)90168-v. [DOI] [PubMed] [Google Scholar]
- Nevo Z., Horwitz A. L., Dorfmann A. Synthesis of chondromucoprotein by chondrocytes in suspension culture. Dev Biol. 1972 May;28(1):219–228. doi: 10.1016/0012-1606(72)90139-x. [DOI] [PubMed] [Google Scholar]
- Paradiso A. M., Negulescu P. A., Machen T. E. Na+-H+ and Cl(-)-OH-(HCO3-) exchange in gastric glands. Am J Physiol. 1986 Apr;250(4 Pt 1):G524–G534. doi: 10.1152/ajpgi.1986.250.4.G524. [DOI] [PubMed] [Google Scholar]
- Putnam R. W., Grubbs R. D. Steady-state pHi, buffering power, and effect of CO2 in a smooth muscle-like cell line. Am J Physiol. 1990 Mar;258(3 Pt 1):C461–C469. doi: 10.1152/ajpcell.1990.258.3.C461. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Sage S. O., Jobson T. M., Rink T. J. Agonist-evoked changes in cytosolic pH and calcium concentration in human platelets: studies in physiological bicarbonate. J Physiol. 1990 Jan;420:31–45. doi: 10.1113/jphysiol.1990.sp017900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz E. R., Kirkpatrick P. R., Thompson R. C. The effect of environmental pH on glycosaminoglycan metabolism by normal human chondrocytes. J Lab Clin Med. 1976 Feb;87(2):198–205. [PubMed] [Google Scholar]
- Stea A., Nurse C. A. Chloride channels in cultured glomus cells of the rat carotid body. Am J Physiol. 1989 Aug;257(2 Pt 1):C174–C181. doi: 10.1152/ajpcell.1989.257.2.C174. [DOI] [PubMed] [Google Scholar]
- Strazzabosco M., Mennone A., Boyer J. L. Intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest. 1991 May;87(5):1503–1512. doi: 10.1172/JCI115160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol. 1984 Sep;354:3P–22P. doi: 10.1113/jphysiol.1984.sp015397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas R. C. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J Physiol. 1977 Dec;273(1):317–338. doi: 10.1113/jphysiol.1977.sp012096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urban J. P., Bayliss M. T. Regulation of proteoglycan synthesis rate in cartilage in vitro: influence of extracellular ionic composition. Biochim Biophys Acta. 1989 Jul 21;992(1):59–65. doi: 10.1016/0304-4165(89)90050-0. [DOI] [PubMed] [Google Scholar]
- Vaughan-Jones R. D. Regulation of chloride in quiescent sheep-heart Purkinje fibres studied using intracellular chloride and pH-sensitive micro-electrodes. J Physiol. 1979 Oct;295:111–137. doi: 10.1113/jphysiol.1979.sp012957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991 Apr;5(7):2013–2019. doi: 10.1096/fasebj.5.7.1707019. [DOI] [PubMed] [Google Scholar]