Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Mar;462:1–30. doi: 10.1113/jphysiol.1993.sp019540

Annual review prize lecture. 'All hands to the sodium pump'.

I M Glynn 1
PMCID: PMC1175286  PMID: 8392565

Full text

PDF
i1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERS R. W., FAHN S., KOVAL G. J. THE ROLE OF SODIUM IONS IN THE ACTIVATION OF ELECTROPHORUS ELECTRIC ORGAN ADENOSINE TRIPHOSPHATASE. Proc Natl Acad Sci U S A. 1963 Sep;50:474–481. doi: 10.1073/pnas.50.3.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apell H. J., Borlinghaus R., Läuger P. Fast charge translocations associated with partial reactions of the Na,K-pump: II. Microscopic analysis of transient currents. J Membr Biol. 1987;97(3):179–191. doi: 10.1007/BF01869221. [DOI] [PubMed] [Google Scholar]
  3. Arguello J. M., Kaplan J. H. Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase. J Biol Chem. 1991 Aug 5;266(22):14627–14635. [PubMed] [Google Scholar]
  4. Bahinski A., Nakao M., Gadsby D. C. Potassium translocation by the Na+/K+ pump is voltage insensitive. Proc Natl Acad Sci U S A. 1988 May;85(10):3412–3416. doi: 10.1073/pnas.85.10.3412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beaugé L. A., Glynn I. M. Occlusion of K ions in the unphosphorylated sodium pump. Nature. 1979 Aug 9;280(5722):510–512. doi: 10.1038/280510a0. [DOI] [PubMed] [Google Scholar]
  6. Beaugé L. A., Glynn I. M. The equilibrium between different conformations of the unphosphorylated sodium pump: effects of ATP and of potassium ions, and their relevance to potassium transport. J Physiol. 1980 Feb;299:367–383. doi: 10.1113/jphysiol.1980.sp013130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beaugé L. A., Ortiz O. Sodium fluxes in rat red blood cells in potassium-free solutions. Evidences for facilitated diffusion. J Membr Biol. 1973;13(2):165–184. doi: 10.1007/BF01868226. [DOI] [PubMed] [Google Scholar]
  8. Blostein R., Chu L. Sidedness of (sodium, potassium)-adenosine triphosphate of inside-out red cell membrane vesicles. Interactions with potassium. J Biol Chem. 1977 May 10;252(9):3035–3043. [PubMed] [Google Scholar]
  9. Blostein R. Sodium-activated adenosine triphosphatase activity of the erythrocyte membrane. J Biol Chem. 1970 Jan 25;245(2):270–275. [PubMed] [Google Scholar]
  10. Borlinghaus R., Apell H. J., Läuger P. Fast charge translocations associated with partial reactions of the Na,K-pump: I. Current and voltage transients after photochemical release of ATP. J Membr Biol. 1987;97(3):161–178. doi: 10.1007/BF01869220. [DOI] [PubMed] [Google Scholar]
  11. Bühler R., Stürmer W., Apell H. J., Läuger P. Charge translocation by the Na,K-pump: I. Kinetics of local field changes studied by time-resolved fluorescence measurements. J Membr Biol. 1991 Apr;121(2):141–161. doi: 10.1007/BF01870529. [DOI] [PubMed] [Google Scholar]
  12. CONWAY E. J. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol Rev. 1957 Jan;37(1):84–132. doi: 10.1152/physrev.1957.37.1.84. [DOI] [PubMed] [Google Scholar]
  13. Capasso J. M., Hoving S., Tal D. M., Goldshleger R., Karlish S. J. Extensive digestion of Na+,K(+)-ATPase by specific and nonspecific proteases with preservation of cation occlusion sites. J Biol Chem. 1992 Jan 15;267(2):1150–1158. [PubMed] [Google Scholar]
  14. Cavieres J. D., Glynn I. M. Sodium-sodium exchange through the sodium pump: the roles of ATP and ADP. J Physiol. 1979 Dec;297(0):637–645. doi: 10.1113/jphysiol.1979.sp013061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. De Weer P., Gadsby D. C., Rakowski R. F. Voltage dependence of the Na-K pump. Annu Rev Physiol. 1988;50:225–241. doi: 10.1146/annurev.ph.50.030188.001301. [DOI] [PubMed] [Google Scholar]
  17. Dibrov P. A., Lazarova R. L., Skulachev V. P., Verkhovskaya M. L. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. Biochim Biophys Acta. 1986 Jul 23;850(3):458–465. doi: 10.1016/0005-2728(86)90114-3. [DOI] [PubMed] [Google Scholar]
  18. Eisenrauch A., Grell E., Bamberg E. Voltage dependence of the Na,K-ATPase incorporated into planar lipid membranes. Soc Gen Physiol Ser. 1991;46:317–326. [PubMed] [Google Scholar]
  19. Ellis-Davies G. C., Kaplan J. H. Binding of Na+ ions to the Na,K-ATPase increases the reactivity of an essential residue in the ATP binding domain. J Biol Chem. 1990 Nov 25;265(33):20570–20576. [PubMed] [Google Scholar]
  20. Esmann M., Skou J. C. Occlusion of Na+ by the Na,K-ATPase in the presence of oligomycin. Biochem Biophys Res Commun. 1985 Mar 29;127(3):857–863. doi: 10.1016/s0006-291x(85)80022-x. [DOI] [PubMed] [Google Scholar]
  21. Fahn S., Hurley M. R., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. II. Effects of N-ethylmaleimide and other sulfhydryl reagents. J Biol Chem. 1966 Apr 25;241(8):1890–1895. [PubMed] [Google Scholar]
  22. Fahn S., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. I. An associated sodium-activated transphosphorylation. J Biol Chem. 1966 Apr 25;241(8):1882–1889. [PubMed] [Google Scholar]
  23. Fahn S., Koval G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. V. Phosphorylation by adenosine triphosphate-32P. J Biol Chem. 1968 Apr 25;243(8):1993–2002. [PubMed] [Google Scholar]
  24. Fambrough D. M., Wolitzky B. A., Taormino J. P., Tamkun M. M., Takeyasu K., Somerville D., Renaud K. J., Lemas M. V., Lebovitz R. M., Kone B. C. A cell biologist's perspective on sites of Na,K-ATPase regulation. Soc Gen Physiol Ser. 1991;46:17–30. [PubMed] [Google Scholar]
  25. Fendler K., Grell E., Bamberg E. Kinetics of pump currents generated by the Na+,K+-ATPase. FEBS Lett. 1987 Nov 16;224(1):83–88. doi: 10.1016/0014-5793(87)80427-1. [DOI] [PubMed] [Google Scholar]
  26. Fendler K., Grell E., Haubs M., Bamberg E. Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes. EMBO J. 1985 Dec 1;4(12):3079–3085. doi: 10.1002/j.1460-2075.1985.tb04048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Forbush B., 3rd Overview: occluded ions and Na, K-ATPase. Prog Clin Biol Res. 1988;268A:229–248. [PubMed] [Google Scholar]
  28. Forbush B., 3rd Rapid release of 42K or 86Rb from two distinct transport sites on the Na,K-pump in the presence of Pi or vanadate. J Biol Chem. 1987 Aug 15;262(23):11116–11127. [PubMed] [Google Scholar]
  29. Gadsby D. C., Kimura J., Noma A. Voltage dependence of Na/K pump current in isolated heart cells. Nature. 1985 May 2;315(6014):63–65. doi: 10.1038/315063a0. [DOI] [PubMed] [Google Scholar]
  30. Gadsby D. C., Nakao M., Bahinski A. Voltage-induced Na/K pump charge movements in dialyzed heart cells. Soc Gen Physiol Ser. 1991;46:355–371. [PubMed] [Google Scholar]
  31. Garrahan P. J., Glynn I. M. Driving the sodium pump backwards to form adenosine triphosphate. Nature. 1966 Sep 24;211(5056):1414–1415. doi: 10.1038/2111414a0. [DOI] [PubMed] [Google Scholar]
  32. Garrahan P. J., Glynn I. M. Facftors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchanges catalysed by the sodium pump. J Physiol. 1967 Sep;192(1):189–216. doi: 10.1113/jphysiol.1967.sp008296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Garrahan P. J., Glynn I. M. The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J Physiol. 1967 Sep;192(1):237–256. doi: 10.1113/jphysiol.1967.sp008298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Garrahan P. J., Glynn I. M. The sensitivity of the sodium pump to external sodium. J Physiol. 1967 Sep;192(1):175–188. doi: 10.1113/jphysiol.1967.sp008295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Garrahan P. J., Glynn I. M. The stoicheiometry of the sodium pump. J Physiol. 1967 Sep;192(1):217–235. doi: 10.1113/jphysiol.1967.sp008297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gloor S., Antonicek H., Sweadner K. J., Pagliusi S., Frank R., Moos M., Schachner M. The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase. J Cell Biol. 1990 Jan;110(1):165–174. doi: 10.1083/jcb.110.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Glynn I. M., Hara Y., Richards D. E., Steinberg M. Comparison of rates of cation release and of conformational change in dog kidney Na, K-ATPase. J Physiol. 1987 Feb;383:477–485. doi: 10.1113/jphysiol.1987.sp016422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Glynn I. M., Hara Y., Richards D. E. The occlusion of sodium ions within the mammalian sodium-potassium pump: its role in sodium transport. J Physiol. 1984 Jun;351:531–547. doi: 10.1113/jphysiol.1984.sp015261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Glynn I. M., Hoffman J. F., Lew V. L. Some "partial reactions" of the sodium pump. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):91–102. doi: 10.1098/rstb.1971.0080. [DOI] [PubMed] [Google Scholar]
  41. Glynn I. M., Hoffman J. F. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J Physiol. 1971 Oct;218(1):239–256. doi: 10.1113/jphysiol.1971.sp009612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Glynn I. M., Howland J. L., Richards D. E. Evidence for the ordered release of rubidium ions occluded within the Na,K-ATPase of mammalian kidney. J Physiol. 1985 Nov;368:453–469. doi: 10.1113/jphysiol.1985.sp015868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Glynn I. M., Karlish S. J. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular sodium. J Physiol. 1976 Apr;256(2):465–496. doi: 10.1113/jphysiol.1976.sp011333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Glynn I. M., Karlish S. J. Occluded cations in active transport. Annu Rev Biochem. 1990;59:171–205. doi: 10.1146/annurev.bi.59.070190.001131. [DOI] [PubMed] [Google Scholar]
  45. Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Glynn I. M., Richards D. E. Evidence for the ordered release of rubidium ions occluded within individual protomers of dog kidney Na+,K+-ATPase. J Physiol. 1989 Jan;408:57–66. doi: 10.1113/jphysiol.1989.sp017446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Glynn I. M., Richards D. E. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport. J Physiol. 1982 Sep;330:17–43. doi: 10.1113/jphysiol.1982.sp014326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Goldshleger R., Tal D. M., Moorman J., Stein W. D., Karlish S. J. Chemical modification of Glu-953 of the alpha chain of Na+,K(+)-ATPase associated with inactivation of cation occlusion. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6911–6915. doi: 10.1073/pnas.89.15.6911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Goldshlegger R., Karlish S. J., Rephaeli A., Stein W. D. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles. J Physiol. 1987 Jun;387:331–355. doi: 10.1113/jphysiol.1987.sp016576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Grell E., Lewitzki E., Uemura D. Interaction between palytoxin and purified Na, K-ATPase. Prog Clin Biol Res. 1988;268B:393–400. [PubMed] [Google Scholar]
  51. Grinvald A., Hildesheim R., Farber I. C., Anglister L. Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J. 1982 Sep;39(3):301–308. doi: 10.1016/S0006-3495(82)84520-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Habermann E., Chhatwal G. S. Ouabain inhibits the increase due to palytoxin of cation permeability of erythrocytes. Naunyn Schmiedebergs Arch Pharmacol. 1982 May;319(2):101–107. doi: 10.1007/BF00503920. [DOI] [PubMed] [Google Scholar]
  53. Habermann E. Palytoxin acts through Na+,K+-ATPase. Toxicon. 1989;27(11):1171–1187. doi: 10.1016/0041-0101(89)90026-3. [DOI] [PubMed] [Google Scholar]
  54. Hara Y., Nakao M. ATP-dependent proton uptake by proteoliposomes reconstituted with purified Na+,K+-ATPase. J Biol Chem. 1986 Sep 25;261(27):12655–12658. [PubMed] [Google Scholar]
  55. Hegyvary C., Post R. L. Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. J Biol Chem. 1971 Sep 10;246(17):5234–5240. [PubMed] [Google Scholar]
  56. Ishida Y., Takagi K., Takahashi M., Satake N., Shibata S. Palytoxin isolated from marine coelenterates. The inhibitory action on (Na,K)-ATPase. J Biol Chem. 1983 Jul 10;258(13):7900–7902. [PubMed] [Google Scholar]
  57. Jewell E. A., Lingrel J. B. Comparison of the substrate dependence properties of the rat Na,K-ATPase alpha 1, alpha 2, and alpha 3 isoforms expressed in HeLa cells. J Biol Chem. 1991 Sep 5;266(25):16925–16930. [PubMed] [Google Scholar]
  58. Jorgensen P. L. Purification and characterization of (Na+ + K+)-ATPase. VI. Differential tryptic modification of catalytic functions of the purified enzyme in presence of NaCl and KCl. Biochim Biophys Acta. 1977 Apr 1;466(1):97–108. doi: 10.1016/0005-2736(77)90211-5. [DOI] [PubMed] [Google Scholar]
  59. Jorgensen P. L. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta. 1975 Sep 2;401(3):399–415. doi: 10.1016/0005-2736(75)90239-4. [DOI] [PubMed] [Google Scholar]
  60. Jørgensen P. L., Skriver E., Hebert H., Maunsbach A. B. Structure of the Na,K pump: crystallization of pure membrane-bound Na,K-ATPase and identification of functional domains of the alpha-subunit. Ann N Y Acad Sci. 1982;402:207–225. doi: 10.1111/j.1749-6632.1982.tb25743.x. [DOI] [PubMed] [Google Scholar]
  61. Karlish S. J., Glynn I. M. An uncoupled efflux of sodium ions from human red cells, probably associated with Na-dependent ATPase activity. Ann N Y Acad Sci. 1974;242(0):461–470. doi: 10.1111/j.1749-6632.1974.tb19110.x. [DOI] [PubMed] [Google Scholar]
  62. Karlish S. J., Goldshleger R., Stein W. D. A 19-kDa C-terminal tryptic fragment of the alpha chain of Na/K-ATPase is essential for occlusion and transport of cations. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4566–4570. doi: 10.1073/pnas.87.12.4566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Karlish S. J., Goldshleger R., Tal D. M., Stein W. D. Structure of the cation binding sites of Na/K-ATPase. Soc Gen Physiol Ser. 1991;46:129–141. [PubMed] [Google Scholar]
  64. Karlish S. J., Pick U. Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump. J Physiol. 1981 Mar;312:505–529. doi: 10.1113/jphysiol.1981.sp013641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Karlish S. J., Stein W. D. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free. J Physiol. 1982 Jul;328:295–316. doi: 10.1113/jphysiol.1982.sp014265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Karlish S. J., Yates D. W., Glynn I. M. Conformational transitions between Na+-bound and K+-bound forms of (Na+ + K+)-ATPase, studied with formycin nucleotides. Biochim Biophys Acta. 1978 Jul 7;525(1):252–264. doi: 10.1016/0005-2744(78)90219-x. [DOI] [PubMed] [Google Scholar]
  67. Karlish S. J., Yates D. W. Tryptophan fluorescence of (Na+ + K+)-ATPase as a tool for study of the enzyme mechanism. Biochim Biophys Acta. 1978 Nov 10;527(1):115–130. doi: 10.1016/0005-2744(78)90261-9. [DOI] [PubMed] [Google Scholar]
  68. Lee K. H., Blostein R. Red cell sodium fluxes catalysed by the sodium pump in the absence of K+ and ADP. Nature. 1980 May 29;285(5763):338–339. doi: 10.1038/285338a0. [DOI] [PubMed] [Google Scholar]
  69. Lew V. L., Hardy M. A., Jr, Ellory J. C. The uncoupled extrusion of Na+ through the Na+ pump. Biochim Biophys Acta. 1973 Oct 11;323(2):251–266. doi: 10.1016/0005-2736(73)90149-1. [DOI] [PubMed] [Google Scholar]
  70. Lingrel J. B., Orlowski J., Price E. M., Pathak B. G. Regulation of the alpha-subunit genes of the Na,K-ATPase and determinants of cardiac glycoside sensitivity. Soc Gen Physiol Ser. 1991;46:1–16. [PubMed] [Google Scholar]
  71. Lytton J., Lin J. C., Guidotti G. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem. 1985 Jan 25;260(2):1177–1184. [PubMed] [Google Scholar]
  72. Läuger P., Apell H. J. Transient behaviour of the Na+/K+-pump: microscopic analysis of nonstationary ion-translocation. Biochim Biophys Acta. 1988 Oct 20;944(3):451–464. doi: 10.1016/0005-2736(88)90516-0. [DOI] [PubMed] [Google Scholar]
  73. Maunsbach A. B., Skriver E., Hebert H. Two-dimensional crystals and three-dimensional structure of Na,K-ATPase analyzed by electron microscopy. Soc Gen Physiol Ser. 1991;46:159–172. [PubMed] [Google Scholar]
  74. McGill D. L., Guidotti G. Insulin stimulates both the alpha 1 and the alpha 2 isoforms of the rat adipocyte (Na+,K+) ATPase. Two mechanisms of stimulation. J Biol Chem. 1991 Aug 25;266(24):15824–15831. [PubMed] [Google Scholar]
  75. McGrail K. M., Phillips J. M., Sweadner K. J. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase. J Neurosci. 1991 Feb;11(2):381–391. doi: 10.1523/JNEUROSCI.11-02-00381.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Moore R. E., Scheuer P. J. Palytoxin: a new marine toxin from a coelenterate. Science. 1971 Apr 30;172(3982):495–498. doi: 10.1126/science.172.3982.495. [DOI] [PubMed] [Google Scholar]
  77. Nakao M., Gadsby D. C. Voltage dependence of Na translocation by the Na/K pump. Nature. 1986 Oct 16;323(6089):628–630. doi: 10.1038/323628a0. [DOI] [PubMed] [Google Scholar]
  78. Nakao M., Gadsby D. C. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol. 1989 Sep;94(3):539–565. doi: 10.1085/jgp.94.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Norby J. G., Jensen J. Binding of ATP to brain microsomal ATPase. Determination of the ATP-binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K+ concentration. Biochim Biophys Acta. 1971 Mar 9;233(1):104–116. doi: 10.1016/0005-2736(71)90362-2. [DOI] [PubMed] [Google Scholar]
  80. Nørby J. G., Jensen J. Functional significance of the oligomeric structure of the Na,K-pump from radiation inactivation and ligand binding. Soc Gen Physiol Ser. 1991;46:173–188. [PubMed] [Google Scholar]
  81. Ozaki H., Nagase H., Urakawa N. Interaction of palytoxin and cardiac glycosides on erythrocyte membrane and (Na+ + K+) ATPase. Eur J Biochem. 1985 Oct 15;152(2):475–480. doi: 10.1111/j.1432-1033.1985.tb09221.x. [DOI] [PubMed] [Google Scholar]
  82. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  83. POST R. L., SEN A. K., ROSENTHAL A. S. A PHOSPHORYLATED INTERMEDIATE IN ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT ACROSS KIDNEY MEMBRANES. J Biol Chem. 1965 Mar;240:1437–1445. [PubMed] [Google Scholar]
  84. Plesner I. W. Application of the theory of enzyme subunit interactions to ATP-hydrolyzing enzymes. The case of Na,K-ATPase. Biophys J. 1987 Jan;51(1):69–78. doi: 10.1016/S0006-3495(87)83312-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Polvani C., Blostein R. Protons as substitutes for sodium and potassium in the sodium pump reaction. J Biol Chem. 1988 Nov 15;263(32):16757–16763. [PubMed] [Google Scholar]
  86. Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
  87. Post R. L., Kume S. Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1973 Oct 25;248(20):6993–7000. [PubMed] [Google Scholar]
  88. Post R. L., Kume S., Tobin T., Orcutt B., Sen A. K. Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J Gen Physiol. 1969 Jul 1;54(1):306–326. doi: 10.1085/jgp.54.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Rakowski R. F. Stoichiometry and voltage dependence of the Na+/K+ pump in squid giant axons and Xenopus oocytes. Soc Gen Physiol Ser. 1991;46:339–353. [PubMed] [Google Scholar]
  90. Rakowski R. F., Vasilets L. A., LaTona J., Schwarz W. A negative slope in the current-voltage relationship of the Na+/K+ pump in Xenopus oocytes produced by reduction of external [K+]. J Membr Biol. 1991 Apr;121(2):177–187. doi: 10.1007/BF01870531. [DOI] [PubMed] [Google Scholar]
  91. Rephaeli A., Richards D. E., Karlish S. J. Electrical potential accelerates the E1P(Na)----E2P conformational transition of (Na,K)-ATPase in reconstituted vesicles. J Biol Chem. 1986 Sep 25;261(27):12437–12440. [PubMed] [Google Scholar]
  92. Rephaeli A., Richards D., Karlish S. J. Conformational transitions in fluorescein-labeled (Na,K)ATPase reconstituted into phospholipid vesicles. J Biol Chem. 1986 May 15;261(14):6248–6254. [PubMed] [Google Scholar]
  93. Richards D. E., Ellory J. C., Glynn I. M. Radiation inactivation of (Na+ + K+)-ATPase. A small target size for the K+-occluding mechanism. Biochim Biophys Acta. 1981 Nov 6;648(2):284–286. doi: 10.1016/0005-2736(81)90045-6. [DOI] [PubMed] [Google Scholar]
  94. Robinson J. D. Affinity of the (Na+ plus K+)-dependent ATPase for Na+ measured by Na+-modified enzyme inactivation. FEBS Lett. 1974 Jan 15;38(3):325–328. doi: 10.1016/0014-5793(74)80083-9. [DOI] [PubMed] [Google Scholar]
  95. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  96. Sachs J. R. Mechanistic implications of the potassium-potassium exchange carried out by the sodium-potassium pump. J Physiol. 1981 Jul;316:263–277. doi: 10.1113/jphysiol.1981.sp013786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Sachs J. R. Potassium-potassium exchange as part of the over-all reaction mechanism of the sodium pump of the human red blood cell. J Physiol. 1986 May;374:221–244. doi: 10.1113/jphysiol.1986.sp016076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Scheiner-Bobis G., Fahlbusch K., Schoner W. Demonstration of cooperating alpha subunits in working (Na+ + K+)-ATPase by the use of the MgATP complex analogue cobalt tetrammine ATP. Eur J Biochem. 1987 Oct 1;168(1):123–131. doi: 10.1111/j.1432-1033.1987.tb13396.x. [DOI] [PubMed] [Google Scholar]
  99. Schwarz W., Vasilets L. A. Variations in voltage-dependent stimulation of the Na+/K+ pump in Xenopus oocytes by external potassium. Soc Gen Physiol Ser. 1991;46:327–338. [PubMed] [Google Scholar]
  100. Shani-Sekler M., Goldshleger R., Tal D. M., Karlish S. J. Inactivation of Rb+ and Na+ occlusion on (Na+,K+)-ATPase by modification of carboxyl groups. J Biol Chem. 1988 Dec 25;263(36):19331–19341. [PubMed] [Google Scholar]
  101. Shull G. E., Schwartz A., Lingrel J. B. Amino-acid sequence of the catalytic subunit of the (Na+ + K+)ATPase deduced from a complementary DNA. Nature. 1985 Aug 22;316(6030):691–695. doi: 10.1038/316691a0. [DOI] [PubMed] [Google Scholar]
  102. Siegel G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. IV. Modification of responses to sodium and potassium by arsenite plus 2,3-dimercaptopropanol. J Biol Chem. 1967 Nov 10;242(21):4972–4979. [PubMed] [Google Scholar]
  103. Simons T. J. Potassium: potassium exchange catalysed by the sodium pump in human red cells. J Physiol. 1974 Feb;237(1):123–155. doi: 10.1113/jphysiol.1974.sp010474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Simons T. J. The interaction of ATP-analogues possessing a blocked gamma-phosphate group with the sodium pump in human red cells. J Physiol. 1975 Jan;244(3):731–739. doi: 10.1113/jphysiol.1975.sp010822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Skulachev V. P. The sodium cycle: a novel type of bacterial energetics. J Bioenerg Biomembr. 1989 Dec;21(6):635–647. doi: 10.1007/BF00762683. [DOI] [PubMed] [Google Scholar]
  106. Stürmer W., Bühler R., Apell H. J., Läuger P. Charge translocation by the Na,K-pump: II. Ion binding and release at the extracellular face. J Membr Biol. 1991 Apr;121(2):163–176. doi: 10.1007/BF01870530. [DOI] [PubMed] [Google Scholar]
  107. Sweadner K. J. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta. 1989 May 9;988(2):185–220. doi: 10.1016/0304-4157(89)90019-1. [DOI] [PubMed] [Google Scholar]
  108. Tosteson M. T., Halperin J. A., Kishi Y., Tosteson D. C. Palytoxin induces an increase in the cation conductance of red cells. J Gen Physiol. 1991 Nov;98(5):969–985. doi: 10.1085/jgp.98.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Vasilets L. A., Schwarz W. Regulation of endogenous and expressed Na+/K+ pumps in Xenopus oocytes by membrane potential and stimulation of protein kinases. J Membr Biol. 1992 Jan;125(2):119–132. doi: 10.1007/BF00233352. [DOI] [PubMed] [Google Scholar]
  110. Yoda A., Yoda S. Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+. J Biol Chem. 1987 Jan 5;262(1):110–115. [PubMed] [Google Scholar]
  111. Yoda S., Yoda A. Phosphorylated intermediates of Na,K-ATPase proteoliposomes controlled by bilayer cholesterol. Interaction with cardiac steroid. J Biol Chem. 1987 Jan 5;262(1):103–109. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES