Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Apr;463:107–121. doi: 10.1113/jphysiol.1993.sp019586

Influence of stimulation parameters on the release of adenosine, lactate and CO2 from contracting dog gracilis muscle.

F I Achike 1, H J Ballard 1
PMCID: PMC1175335  PMID: 8246177

Abstract

1. The addition of adenosine, CO2 and lactate to the venous blood draining an isolated constant-flow perfused gracilis muscle was studied in anaesthetized and artificially ventilated dogs during twitch and tetanic contractions. 2. Venous adenosine concentration increased from 154 +/- 33 nM (mean +/- S.E.M.) to 279 +/- 121 or 280 +/- 125 nM after 10 min of 1.5 or 3 Hz twitch contractions and to 240 +/- 120 or 276 +/- 139 nM after 10 min of 1 or 5 s tetani occurring at 0.1 Hz. Twitch contractions at 0.1 or 0.5 Hz for 10 min did not significantly elevate venous adenosine. 3. Venous lactate concentration was significantly increased after 10 min of 1.5 or 3 Hz twitches or 5 s tetani at 0.1 Hz. There was a good correlation (r = 0.70; P < 0.001) between venous adenosine and lactate concentrations. 4. Venous partial pressure of CO2 (PCO2) was significantly elevated after 10 min of 1.5 or 3 Hz twitch contractions or 1 or 5 s tetani at 0.1 Hz. There was also a good correlation (r = 0.58; P < 0.001) between venous adenosine concentration and PCO2. 5. Venous partial pressure of O2 (PO2) decreased during all contractions except those at 0.1 Hz, but the oxygen cost per unit of tension x time was similar during every pattern of stimulation, and the percentage of the total energy production achieved by anaerobic means during muscle contractions did not exceed that at rest, indicating that there had been no limitation to the oxygen supply. Venous PO2 was poorly correlated with venous adenosine concentration (r = 0.28), but quite well correlated with venous lactate concentration (r = 0.53; P < 0.001). If the indirect influence of PO2 on venous adenosine concentration via an increase in lactate concentration was eliminated by partial correlation, then the coefficient for the relationship between venous adenosine concentration and venous PO2 became 0.15. 6. There was a significant correlation between the venous adenosine concentration and the venous pH (r = 0.53; P < 0.001). If the influence of oxygenation on venous adenosine and pH was eliminated by partial correlation, the coefficient for the relationship between venous adenosine and pH increased to 0.95.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
107

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEATTY C. H., PETERSON R. D., BOCEK R. M. Metabolism of red and white muscle fiber groups. Am J Physiol. 1963 May;204:939–942. doi: 10.1152/ajplegacy.1963.204.5.939. [DOI] [PubMed] [Google Scholar]
  2. Ballard H. J., Cotterrell D., Karim F. Appearance of adenosine in venous blood from the contracting gracilis muscle and its role in vasodilatation in the dog. J Physiol. 1987 Jun;387:401–413. doi: 10.1113/jphysiol.1987.sp016580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballard H. J., Cotterrell D., Karim F. The influence of blood flow rate on adenosine release from contracting dog skeletal muscle. Q J Exp Physiol. 1989 Mar;74(2):97–107. doi: 10.1113/expphysiol.1989.sp003267. [DOI] [PubMed] [Google Scholar]
  4. Ballard H. J. The influence of lactic acid on adenosine release from skeletal muscle in anaesthetized dogs. J Physiol. 1991 Feb;433:95–108. doi: 10.1113/jphysiol.1991.sp018416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belloni F. L., Bruttig S. P., Rubio R., Berne R. M. Uptake and release of adenosine by cultured rat aortic smooth muscle. Microvasc Res. 1986 Sep;32(2):200–210. doi: 10.1016/0026-2862(86)90054-3. [DOI] [PubMed] [Google Scholar]
  6. Belloni F. L., Phair R. D., Sparks H. V. The role of adenosine in prolonged vasodilation following flow-restricted exercise of canine skeletal muscle. Circ Res. 1979 Jun;44(6):759–766. doi: 10.1161/01.res.44.6.759. [DOI] [PubMed] [Google Scholar]
  7. Berne R. M., Rubio R., Dobson J. G., Jr, Curnish R. R. Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation. Circ Res. 1971 Jan;28(Suppl):115+–115+. [PubMed] [Google Scholar]
  8. Bockman E. L., McKenzie J. E. Tissue adenosine content in active soleus and gracilis muscles of cats. Am J Physiol. 1983 Apr;244(4):H552–H559. doi: 10.1152/ajpheart.1983.244.4.H552. [DOI] [PubMed] [Google Scholar]
  9. Connett R. J., Gayeski T. E., Honig C. R. Lactate accumulation in fully aerobic, working, dog gracilis muscle. Am J Physiol. 1984 Jan;246(1 Pt 2):H120–H128. doi: 10.1152/ajpheart.1984.246.1.H120. [DOI] [PubMed] [Google Scholar]
  10. Dobson J. G., Jr, Rubio R., Berne R. M. Role of adenine nucleotides, adenosine, and inorganic phosphate in the regulation of skeletal muscle blood flow. Circ Res. 1971 Oct;29(4):375–384. doi: 10.1161/01.res.29.4.375. [DOI] [PubMed] [Google Scholar]
  11. Everse J., Kaplan N. O. Lactate dehydrogenases: structure and function. Adv Enzymol Relat Areas Mol Biol. 1973;37:61–133. doi: 10.1002/9780470122822.ch2. [DOI] [PubMed] [Google Scholar]
  12. Gollnick P. D., Armstrong R. B. Histochemical localization of lactate dehydrogenase isoenzymes in human skeletal muscle fibers. Life Sci. 1976 Jan 1;18(1):27–31. doi: 10.1016/0024-3205(76)90269-1. [DOI] [PubMed] [Google Scholar]
  13. IMAI S., RILEY A. L., BERNE R. M. EFFECT OF ISCHEMIA ON ADENINE NUCLEOTIDES IN CARDIAC AND SKELETAL MUSCLE. Circ Res. 1964 Nov;15:443–450. doi: 10.1161/01.res.15.5.443. [DOI] [PubMed] [Google Scholar]
  14. Jöbsis F. F., Stainsby W. N. Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol. 1968 May;4(3):292–300. doi: 10.1016/0034-5687(68)90035-2. [DOI] [PubMed] [Google Scholar]
  15. Kelman G. R. Digital computer subroutine for the conversion of oxygen tension into saturation. J Appl Physiol. 1966 Jul;21(4):1375–1376. doi: 10.1152/jappl.1966.21.4.1375. [DOI] [PubMed] [Google Scholar]
  16. Kille J. M., Klabunde R. E. Adenosine as a mediator of postcontraction hyperemia in dog gracilis muscle. Am J Physiol. 1984 Feb;246(2 Pt 2):H274–H282. doi: 10.1152/ajpheart.1984.246.2.H274. [DOI] [PubMed] [Google Scholar]
  17. Klabunde R. E., Mayer S. E. Effects of ischemia on tissue metabolites in red (slow) and white (fast) skeletal muscle of the chicken. Circ Res. 1979 Sep;45(3):366–373. doi: 10.1161/01.res.45.3.366. [DOI] [PubMed] [Google Scholar]
  18. Maizels E. Z., Ruderman N. B., Goodman M. N., Lau D. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem J. 1977 Mar 15;162(3):557–568. doi: 10.1042/bj1620557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maxwell L. C., Barclay J. K., Mohrman D. E., Faulkner J. A. Physiological characteristics of skeletal muscles of dogs and cats. Am J Physiol. 1977 Jul;233(1):C14–C18. doi: 10.1152/ajpcell.1977.233.1.C14. [DOI] [PubMed] [Google Scholar]
  20. Metzger J. M., Moss R. L. Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. J Physiol. 1987 Dec;393:727–742. doi: 10.1113/jphysiol.1987.sp016850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mohrman D. E., Regal R. R. Relation of blood flow to VO2, PO2, and PCO2 in dog gastrocnemius muscle. Am J Physiol. 1988 Nov;255(5 Pt 2):H1004–H1010. doi: 10.1152/ajpheart.1988.255.5.H1004. [DOI] [PubMed] [Google Scholar]
  22. Mustafa S. J., Mansour M. M. Effect of perfusate pH on coronary flow and adenosine release in isolated rabbit heart. Proc Soc Exp Biol Med. 1984 May;176(1):22–26. doi: 10.3181/00379727-176-41836. [DOI] [PubMed] [Google Scholar]
  23. OLSON G. F. Optimal conditions for the enzymatic determination of L-lactic acid. Clin Chem. 1962 Feb;8:1–10. [PubMed] [Google Scholar]
  24. Phair R. D., Sparks H. V. Adenosine content of skeletal muscle during active hyperemia and ischemic contraction. Am J Physiol. 1979 Jul;237(1):H1–H9. doi: 10.1152/ajpheart.1979.237.1.H1. [DOI] [PubMed] [Google Scholar]
  25. Rennie M. J., Winder W. W., Holloszy J. O. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem J. 1976 Jun 15;156(3):647–655. doi: 10.1042/bj1560647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schwartz L. M., McKenzie J. E. Adenosine and active hyperemia in soleus and gracilis muscle of cats. Am J Physiol. 1990 Oct;259(4 Pt 2):H1295–H1304. doi: 10.1152/ajpheart.1990.259.4.H1295. [DOI] [PubMed] [Google Scholar]
  27. Stainsby W. N., Barclay J. K. Oxygen uptake for brief tetanic contractions of dog skeletal muscle in situ. Am J Physiol. 1972 Aug;223(2):371–375. doi: 10.1152/ajplegacy.1972.223.2.371. [DOI] [PubMed] [Google Scholar]
  28. Steffen R. P., McKenzie J. E., Bockman E. L., Haddy F. J. Changes in dog gracilis muscle adenosine during exercise and acetate infusion. Am J Physiol. 1983 Mar;244(3):H387–H395. doi: 10.1152/ajpheart.1983.244.3.H387. [DOI] [PubMed] [Google Scholar]
  29. Tominaga S., Curnish R. R., Belardinelli L., Rubio R., Berne R. M. Adenosine release during early and sustained exercise of canine skeletal muscle. Am J Physiol. 1980 Feb;238(2):H156–H163. doi: 10.1152/ajpheart.1980.238.2.H156. [DOI] [PubMed] [Google Scholar]
  30. Wilson B. A., Stainsby W. N. Relation between oxygen uptake and developed tension in dog skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol. 1978 Aug;45(2):234–237. doi: 10.1152/jappl.1978.45.2.234. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES