Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 May;464:273–289. doi: 10.1113/jphysiol.1993.sp019634

The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones.

K Kaila 1, J Voipio 1, P Paalasmaa 1, M Pasternack 1, R A Deisz 1
PMCID: PMC1175385  PMID: 8229801

Abstract

1. The ionic mechanism underlying the fast, GABAA receptor-mediated inhibitory postsynaptic potential (IPSPA) was examined in rat neocortical neurones using intracellular recording techniques. Synaptic responses were evoked by orthodromic stimulation applied to the subcortical white matter or to the pial surface. All experiments were carried out at a constant extracellular Cl- concentration. 2. The resting membrane potential was -76.2 +/- 1.0 mV (mean +/- S.E.M., n = 32) and in most cells IPSPA was depolarizing. The reversal potential of IPSPA (EIPSP-A) was -70.2 +/- 0.9 mV (n = 32) and that of a more slowly developing hyperpolarizing response (IPSPB) was -91.4 +/- 1.3 mV (n = 28). 3. An examination of the temporal relationships between excitatory postsynaptic potentials (EPSPs) and IPSPAs in different cells suggested that, despite partial overlap of these responses, EPSPs had little influence on the measured values of EIPSP-A. 4. Application of 20 mM trimethylamine (TriMA), a membrane-permeant weak base which is expected to produce a rise in pHi (and hence in intracellular HCO3-), induced a reversible positive shift in EIPSP-A of up to +9.0 mV (mean + 4.2 mV) at an extracellular pH (pHo) of 7.4. In some experiments, the shift in reversal potential was associated with a change in the polarity of IPSPA from hyperpolarizing to depolarizing. 5. Application of 20 mM lactate (a membrane-permeant weak acid which is expected to produce a fall in pHi and hence in intracellular HCO3-) at pHo 7.0 produced a hyperpolarizing shift in EIPS-A of up to -7.5 mV (mean -5.6 mV). In some experiments, exposure to lactate changed the polarity of IPSPA from depolarizing to hyperpolarizing. 6. Changes in pHo from 7.4 to 7.0 reduced the effect of TriMA and augmented that of lactate on EIPSP-A, as could be expected on the basis of the pHo-dependent change in the fraction of membrane permeable non-charged weak base or acid. 7. Under control conditions, a change in pHo from 7.4 to 7.0 produced a slight positive shift (< +2 mV) in EIPSP-A. In the presence of TriMA, a similar change in pHo gave rise to a negative shift (-1.8 to -2.7 mV). 8. The results obtained indicate that HCO3- ions contribute significantly to the IPSPA, thereby making EIPSP-A more positive than the Cl- equilibrium potential.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin C. C., Deisz R. A., Lux H. D. Ammonium action on post-synaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion. J Physiol. 1982 Aug;329:319–339. doi: 10.1113/jphysiol.1982.sp014305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen J. C., Chesler M. Modulation of extracellular pH by glutamate and GABA in rat hippocampal slices. J Neurophysiol. 1992 Jan;67(1):29–36. doi: 10.1152/jn.1992.67.1.29. [DOI] [PubMed] [Google Scholar]
  4. Chesler M., Kaila K. Modulation of pH by neuronal activity. Trends Neurosci. 1992 Oct;15(10):396–402. doi: 10.1016/0166-2236(92)90191-a. [DOI] [PubMed] [Google Scholar]
  5. Chesler M. The regulation and modulation of pH in the nervous system. Prog Neurobiol. 1990;34(5):401–427. doi: 10.1016/0301-0082(90)90034-e. [DOI] [PubMed] [Google Scholar]
  6. Connors B. W., Gutnick M. J., Prince D. A. Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol. 1982 Dec;48(6):1302–1320. doi: 10.1152/jn.1982.48.6.1302. [DOI] [PubMed] [Google Scholar]
  7. Connors B. W., Malenka R. C., Silva L. R. Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol. 1988 Dec;406:443–468. doi: 10.1113/jphysiol.1988.sp017390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deisz R. A., Fortin G., Zieglgänsberger W. Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. J Neurophysiol. 1991 Feb;65(2):371–382. doi: 10.1152/jn.1991.65.2.371. [DOI] [PubMed] [Google Scholar]
  9. Deisz R. A., Lux H. D. The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones. J Physiol. 1982 May;326:123–138. doi: 10.1113/jphysiol.1982.sp014181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deisz R. A., Prince D. A. Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feed-back on GABA release. J Physiol. 1989 May;412:513–541. doi: 10.1113/jphysiol.1989.sp017629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eccles J., Nicoll R. A., Oshima T., Rubia F. J. The anionic permeability of the inhibitory postsynaptic membrane of hippocampal pyramidal cells. Proc R Soc Lond B Biol Sci. 1977 Sep 19;198(1133):345–361. doi: 10.1098/rspb.1977.0102. [DOI] [PubMed] [Google Scholar]
  12. Eisner D. A., Kenning N. A., O'Neill S. C., Pocock G., Richards C. D., Valdeolmillos M. A novel method for absolute calibration of intracellular pH indicators. Pflugers Arch. 1989 Mar;413(5):553–558. doi: 10.1007/BF00594188. [DOI] [PubMed] [Google Scholar]
  13. Gaillard S., Dupont J. L. Ionic control of intracellular pH in rat cerebellar Purkinje cells maintained in culture. J Physiol. 1990 Jun;425:71–83. doi: 10.1113/jphysiol.1990.sp018093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallagher J. P., Nakamura J., Shinnick-Gallagher P. The effects of temperature, pH and Cl-pump inhibitors on GABA responses recorded from cat dorsal root ganglia. Brain Res. 1983 May 16;267(2):249–259. doi: 10.1016/0006-8993(83)90877-6. [DOI] [PubMed] [Google Scholar]
  15. Howe J. R., Sutor B., Zieglgänsberger W. Baclofen reduces post-synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. J Physiol. 1987 Mar;384:539–569. doi: 10.1113/jphysiol.1987.sp016469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inomata N., Oomura Y., Akaike N., Edwards C. The anion selectivity of the gamma-aminobutyric acid controlled chloride channel in the perfused spinal ganglion cell of frog. Neurosci Res. 1986 Jul;3(5):371–383. doi: 10.1016/0168-0102(86)90029-5. [DOI] [PubMed] [Google Scholar]
  17. Jean T., Frelin C., Vigne P., Barbry P., Lazdunski M. Biochemical properties of the Na+/H+ exchange system in rat brain synaptosomes. Interdependence of internal and external pH control of the exchange activity. J Biol Chem. 1985 Aug 15;260(17):9678–9684. [PubMed] [Google Scholar]
  18. Kaila K., Paalasmaa P., Taira T., Voipio J. pH transients due to monosynaptic activation of GABAA receptors in rat hippocampal slices. Neuroreport. 1992 Jan;3(1):105–108. doi: 10.1097/00001756-199201000-00028. [DOI] [PubMed] [Google Scholar]
  19. Kaila K., Pasternack M., Saarikoski J., Voipio J. Influence of GABA-gated bicarbonate conductance on potential, current and intracellular chloride in crayfish muscle fibres. J Physiol. 1989 Sep;416:161–181. doi: 10.1113/jphysiol.1989.sp017755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaila K., Rydqvist B., Pasternack M., Voipio J. Inward current caused by sodium-dependent uptake of GABA in the crayfish stretch receptor neurone. J Physiol. 1992;453:627–645. doi: 10.1113/jphysiol.1992.sp019248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaila K., Saarikoski J., Voipio J. Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. J Physiol. 1990 Aug;427:241–260. doi: 10.1113/jphysiol.1990.sp018170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaila K., Voipio J. Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature. 1987 Nov 12;330(6144):163–165. doi: 10.1038/330163a0. [DOI] [PubMed] [Google Scholar]
  23. Kelly J. S., Krnjević K., Morris M. E., Yim G. K. Anionic permeability of cortical neurones. Exp Brain Res. 1969;7(1):11–31. doi: 10.1007/BF00236105. [DOI] [PubMed] [Google Scholar]
  24. Llinas R., Baker R., Precht W. Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurons. J Neurophysiol. 1974 May;37(3):522–532. doi: 10.1152/jn.1974.37.3.522. [DOI] [PubMed] [Google Scholar]
  25. Lux H. D. Ammonium and chloride extrusion: hyperpolarizing synaptic inhibition in spinal motoneurons. Science. 1971 Aug 6;173(3996):555–557. doi: 10.1126/science.173.3996.555. [DOI] [PubMed] [Google Scholar]
  26. Mason M. J., Mattsson K., Pasternack M., Voipio J., Kaila K. Postsynaptic fall in intracellular pH and increase in surface pH caused by efflux of formate and acetate anions through GABA-gated channels in crayfish muscle fibres. Neuroscience. 1990;34(2):359–368. doi: 10.1016/0306-4522(90)90145-t. [DOI] [PubMed] [Google Scholar]
  27. Misgeld U., Deisz R. A., Dodt H. U., Lux H. D. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science. 1986 Jun 13;232(4756):1413–1415. doi: 10.1126/science.2424084. [DOI] [PubMed] [Google Scholar]
  28. Pasternack M., Bountra C., Voipio J., Kaila K. Influence of extracellular and intracellular pH on GABA-gated chloride conductance in crayfish muscle fibres. Neuroscience. 1992;47(4):921–929. doi: 10.1016/0306-4522(92)90040-9. [DOI] [PubMed] [Google Scholar]
  29. Raabe W., Gumnit R. J. Disinhibition in cat motor cortex by ammonia. J Neurophysiol. 1975 Mar;38(2):347–355. doi: 10.1152/jn.1975.38.2.347. [DOI] [PubMed] [Google Scholar]
  30. Raley-Susman K. M., Cragoe E. J., Jr, Sapolsky R. M., Kopito R. R. Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger. J Biol Chem. 1991 Feb 15;266(5):2739–2745. [PubMed] [Google Scholar]
  31. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  32. Sharp A. P., Thomas R. C. The effects of chloride substitution on intracellular pH in crab muscle. J Physiol. 1981 Mar;312:71–80. doi: 10.1113/jphysiol.1981.sp013616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spencer T. L., Lehninger A. L. L-lactate transport in Ehrlich ascites-tumour cells. Biochem J. 1976 Feb 15;154(2):405–414. doi: 10.1042/bj1540405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Szatkowski M. S., Thomas R. C. The intrinsic intracellular H+ buffering power of snail neurones. J Physiol. 1989 Feb;409:89–101. doi: 10.1113/jphysiol.1989.sp017486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thomas R. C. Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol. 1984 Sep;354:3P–22P. doi: 10.1113/jphysiol.1984.sp015397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thompson S. M., Deisz R. A., Prince D. A. Outward chloride/cation co-transport in mammalian cortical neurons. Neurosci Lett. 1988 Jun 17;89(1):49–54. doi: 10.1016/0304-3940(88)90479-x. [DOI] [PubMed] [Google Scholar]
  37. Thompson S. M., Deisz R. A., Prince D. A. Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. J Neurophysiol. 1988 Jul;60(1):105–124. doi: 10.1152/jn.1988.60.1.105. [DOI] [PubMed] [Google Scholar]
  38. Voipio J., Pasternack M., Rydqvist B., Kaila K. Effect of gamma-aminobutyric acid on intracellular pH in the crayfish stretch-receptor neurone. J Exp Biol. 1991 Mar;156:349–360. doi: 10.1242/jeb.156.1.349. [DOI] [PubMed] [Google Scholar]
  39. de Hemptinne A., Marrannes R., Vanheel B. Influence of organic acids on intracellular pH. Am J Physiol. 1983 Sep;245(3):C178–C183. doi: 10.1152/ajpcell.1983.245.3.C178. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES