Abstract
1. The effects of increased osmolality and ionic strength on the mechanism of Ca2+ release were examined in mechanically skinned skeletal muscle fibres of the toad at 23 degrees C. Ca2+ release was induced by depolarizing the transverse tubular (T-) system by ionic substitution. 2. Increasing the osmolality of the 'myoplasmic' solution about four times (to 955 mosmol/kg), by addition of 700 mM sucrose to the standard potassium (K-)HDTA solution (HDTA: hexamethylenediamine-tetraacetate), only depressed the depolarization-induced response by about 46%. Much of this decrease could be attributed to a reduction in the Ca(2+)-sensitivity of the contractile proteins at this high osmolality. 3. Addition of > 400 mM sucrose itself often induced substantial Ca2+ release and a transient tension response. This 'spontaneous' release was (a) greatly enhanced when the sarcoplasmic reticulum (SR) had been heavily loaded with Ca2+, (b) little affected by inactivation of the voltage sensors by prolonged or permanent depolarization of the T-system and (c) blocked by Ruthenium Red (10 microM). 4. When both the osmolality and ionic strength were increased, by increasing the K-HDTA concentration, the depolarization-induced force was greatly reduced (to 35% at 818 mosmol/kg and 5% at 1095 mosmol/kg). Most of this reduction could be directly attributed to the substantially reduced maximum force and Ca2+ sensitivity of the contractile apparatus. 5. The small amount of releasable Ca2+ remaining in the SR after a single depolarization in a high-HDTA solution with 1 mM EGTA (to chelate the released Ca2+), indicated that depolarization could still elicit massive Ca2+ release at high ionic strength and osmolality (at 1 mM free Mg2+). 6. In contrast, when the total Mg2+ and ATP concentrations were raised about threefold (free [Mg2+] increased 2.7-fold) along with the osmolality and ionic strength, the ability of depolarization to elicit Ca2+ release was greatly hindered. 7. Osmotic compression of the skinned fibres to their in situ diameter by addition of 4% polyvinylpyrrolidone (PVP-40), substantially potentiated the depolarization-induced force responses, due partly to an increase in the Ca(2+)-sensitivity of the contractile apparatus. 8. These results indicate how increased intracellular osmolality, ionic strength and [Mg2+] produce the transient contraction and subsequent inhibition of tetanic tension in intact muscle fibres exposed to hypertonic solutions.
Full text
PDF![629](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/29f4e6dc5fcf/jphysiol00418-0622.png)
![630](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/ca7cd7b9cc62/jphysiol00418-0623.png)
![631](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/31e164db06cb/jphysiol00418-0624.png)
![632](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/60a1b66995d0/jphysiol00418-0625.png)
![633](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/a420b8fadf51/jphysiol00418-0626.png)
![634](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/e226786cc324/jphysiol00418-0627.png)
![635](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/5873fe6cc3bb/jphysiol00418-0628.png)
![636](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/381f6114ad06/jphysiol00418-0629.png)
![637](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/7ec88f5422cf/jphysiol00418-0630.png)
![638](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/701e38f66050/jphysiol00418-0631.png)
![639](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/205b5be5ab1f/jphysiol00418-0632.png)
![640](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/099fda3b9a9e/jphysiol00418-0633.png)
![641](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/34804f66d7bd/jphysiol00418-0634.png)
![642](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/d36f5aaf573c/jphysiol00418-0635.png)
![643](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/7fe6554c4fe3/jphysiol00418-0636.png)
![644](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/c3e616bb081a/jphysiol00418-0637.png)
![645](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/4e77045a64ef/jphysiol00418-0638.png)
![646](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/d5c4da4f0aa8/jphysiol00418-0639.png)
![647](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/e268f0221644/jphysiol00418-0640.png)
![648](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b814/1175406/74f9b673e854/jphysiol00418-0641.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews M. A., Maughan D. W., Nosek T. M., Godt R. E. Ion-specific and general ionic effects on contraction of skinned fast-twitch skeletal muscle from the rabbit. J Gen Physiol. 1991 Dec;98(6):1105–1125. doi: 10.1085/jgp.98.6.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLINKS J. R. INFLUENCE OF OSMOTIC STRENGTH ON CROSS-SECTION AND VOLUME OF ISOLATED SINGLE MUSCLE FIBRES. J Physiol. 1965 Mar;177:42–57. doi: 10.1113/jphysiol.1965.sp007574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen T., Dahl-Hansen A. B., Elbrink J. The effect of hyperosmolarity and insulin on resting tension and calcium fluxes in rat soleus muscle. J Physiol. 1979 Jul;292:505–526. doi: 10.1113/jphysiol.1979.sp012868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DYDYNSKA M., WILKIE D. R. THE OSMOTIC PROPERTIES OF STRIATED MUSCLE FIBERS IN HYPERTONIC SOLUTIONS. J Physiol. 1963 Nov;169:312–329. doi: 10.1113/jphysiol.1963.sp007258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donaldson S. K., Kerrick W. G. Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers. J Gen Physiol. 1975 Oct;66(4):427–444. doi: 10.1085/jgp.66.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferenczi M. A., Goldman Y. E., Simmons R. M. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J Physiol. 1984 May;350:519–543. doi: 10.1113/jphysiol.1984.sp015216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fink R. H., Stephenson D. G., Williams D. A. Potassium and ionic strength effects on the isometric force of skinned twitch muscle fibres of the rat and toad. J Physiol. 1986 Jan;370:317–337. doi: 10.1113/jphysiol.1986.sp015937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godt R. E. Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration. J Gen Physiol. 1974 Jun;63(6):722–739. doi: 10.1085/jgp.63.6.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godt R. E., Maughan D. W. Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit. Pflugers Arch. 1981 Oct;391(4):334–337. doi: 10.1007/BF00581519. [DOI] [PubMed] [Google Scholar]
- Gordon A. M., Godt R. E. Some effects of hypertonic solutions on contraction and excitation-contraction coupling in frog skeletal muscles. J Gen Physiol. 1970 Feb;55(2):254–275. doi: 10.1085/jgp.55.2.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulati J., Podolsky R. J. Isotonic contraction of skinned muscle fibers on a slow time base: effects of ionic strength and calcium. J Gen Physiol. 1981 Sep;78(3):233–257. doi: 10.1085/jgp.78.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOWARTH J. V. The behaviour of frog muscle in hypertonic solutions. J Physiol. 1958 Nov 10;144(1):167–175. doi: 10.1113/jphysiol.1958.sp006093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homsher E., Briggs F. N., Wise R. M. Effects of hypertonicity on resting and contracting frog skeletal muscles. Am J Physiol. 1974 Apr;226(4):855–863. doi: 10.1152/ajplegacy.1974.226.4.855. [DOI] [PubMed] [Google Scholar]
- Huang C. L. Intramembrane charge movements in frog skeletal muscle in strongly hypertonic solutions. J Gen Physiol. 1992 Apr;99(4):531–544. doi: 10.1085/jgp.99.4.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb G. D., Recupero E., Stephenson D. G. Effect of myoplasmic pH on excitation-contraction coupling in skeletal muscle fibres of the toad. J Physiol. 1992 Mar;448:211–224. doi: 10.1113/jphysiol.1992.sp019037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb G. D., Stephenson D. G. Calcium release in skinned muscle fibres of the toad by transverse tubule depolarization or by direct stimulation. J Physiol. 1990 Apr;423:495–517. doi: 10.1113/jphysiol.1990.sp018036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb G. D., Stephenson D. G. Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad. J Physiol. 1990 Apr;423:519–542. doi: 10.1113/jphysiol.1990.sp018037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb G. D., Stephenson D. G. Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. J Physiol. 1991 Mar;434:507–528. doi: 10.1113/jphysiol.1991.sp018483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lännergren J., Noth J. Tension in isolated frog muscle fibers induced by hypertonic solutions. J Gen Physiol. 1973 Feb;61(2):158–175. doi: 10.1085/jgp.61.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. II. CORRELATION BETWEEN ADENOSINE TRIPHOSPHATASE ACTIVITY AND CA++ UPTAKE. J Biol Chem. 1964 Feb;239:659–668. [PubMed] [Google Scholar]
- Matsubara I., Goldman Y. E., Simmons R. M. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J Mol Biol. 1984 Feb 15;173(1):15–33. doi: 10.1016/0022-2836(84)90401-7. [DOI] [PubMed] [Google Scholar]
- Parker I., Zhu P. H. Effects of hypertonic solutions on calcium transients in frog twitch muscle fibres. J Physiol. 1987 Feb;383:615–627. doi: 10.1113/jphysiol.1987.sp016432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapoport S. I., Nassar-Gentina V., Passonneau J. V. Effects of excitation-contraction uncoupling by stretch and hypertonicity on metabolism and tension in single frog muscle fibers. J Gen Physiol. 1982 Jul;80(1):73–81. doi: 10.1085/jgp.80.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. V., Shuman H., Somlyo A. P. Elemental distribution in striated muscle and the effects of hypertonicity. Electron probe analysis of cryo sections. J Cell Biol. 1977 Sep;74(3):828–857. doi: 10.1083/jcb.74.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein P., Palade P. Sarcoballs: direct access to sarcoplasmic reticulum Ca2+-channels in skinned frog muscle fibers. Biophys J. 1988 Aug;54(2):357–363. doi: 10.1016/S0006-3495(88)82967-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson D. G., Williams D. A. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol. 1981 Aug;317:281–302. doi: 10.1113/jphysiol.1981.sp013825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stienen G. J., Blangé T., Treijtel B. W. Tension development and calcium sensitivity in skinned muscle fibres of the frog. Pflugers Arch. 1985 Sep;405(1):19–23. doi: 10.1007/BF00591092. [DOI] [PubMed] [Google Scholar]
- Taylor S. R., Rüdel R., Blinks J. R. Calcium transients in amphibian muscle. Fed Proc. 1975 Apr;34(5):1379–1381. [PubMed] [Google Scholar]
- Yamada K. The increase in the rate of heat production of frog's skeletal muscle caused by hypertonic solutions. J Physiol. 1970 May;208(1):49–64. doi: 10.1113/jphysiol.1970.sp009105. [DOI] [PMC free article] [PubMed] [Google Scholar]