Abstract
1. The purpose of the present work was to examine certain membrane transport mechanisms likely to carry zinc across the brush-border membrane of pig small intestine, isolated in a vesicular form. 2. In initial velocity conditions, saturation kinetics revealed a great effect of pH on zinc transport: optimal conditions were observed with an intravesicular pH of around 6.6 with or without a H+ gradient; however, this did not allow us to conclude the existence of a neutral exchange between Zn2+ and H+ ions. 3. By measuring 36Cl uptakes, the presence of the Cl(-)-HCO3- or Cl(-)-OH-antiporter with typical 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) sensitivity was detected in vesicles; zinc did not alter this anionic exchange activity. A 65Zn time course, performed in conditions identical with those for 36Cl uptake, was DIDS insensitive and was greatly inhibited by an outward OH- gradient. This could argue against a transport of zinc as a complex with Cl- and HCO3- through the anion antiporter. 4. When external Cl- and HCO3- were replaced by SCN-, able to form a Zn(SCN)4(2-) complex, we observed a stimulating effect of outward HCO3- gradients on 65Zn uptake but neither DIDS nor diphenylamine-2-carboxylate (DPC) inhibited the transport in these conditions. This suggested that the intestinal anion antiporter was not a major route for zinc reabsorption. 5. The tripeptide Gly-Gly-His at low concentrations stimulated 65Zn uptake, then inhibited it in a dose-dependent manner either in the presence of an inward H+ gradient or in the presence of a membrane potential 'negative inside' or in both situations. These conditions are necessary for the active transport of the peptide and this strongly suggests that zinc can be transported as a [Gly-Gly-His-Zn] complex, utilizing the peptide carrier system.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aiken S. P., Horn N. M., Saunders N. R. Effects of amino acids on zinc transport in rat erythrocytes. J Physiol. 1992 Jan;445:69–80. doi: 10.1113/jphysiol.1992.sp018912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beck J. C., Sacktor B. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem. 1978 Aug 10;253(15):5531–5535. [PubMed] [Google Scholar]
- Binder H. J., Murer H. Potassium/proton exchange in brush-border membrane of rat ileum. J Membr Biol. 1986;91(1):77–84. doi: 10.1007/BF01870217. [DOI] [PubMed] [Google Scholar]
- Blakeborough P., Salter D. N. The intestinal transport of zinc studied using brush-border-membrane vesicles from the piglet. Br J Nutr. 1987 Jan;57(1):45–55. doi: 10.1079/bjn19870008. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cousins R. J. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985 Apr;65(2):238–309. doi: 10.1152/physrev.1985.65.2.238. [DOI] [PubMed] [Google Scholar]
- DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
- Eriksson A. E., Kylsten P. M., Jones T. A., Liljas A. Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCN- ion to the zinc at high pH. Proteins. 1988;4(4):283–293. doi: 10.1002/prot.340040407. [DOI] [PubMed] [Google Scholar]
- Forsyth G. W., Gabriel S. E. Chloride ion transport into pig jejunal brush-border membrane vesicles. J Physiol. 1988 Aug;402:555–564. doi: 10.1113/jphysiol.1988.sp017221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gachot B., Tauc M., Morat L., Poujeol P. Zinc uptake by proximal cells isolated from rabbit kidney: effects of cysteine and histidine. Pflugers Arch. 1991 Dec;419(6):583–587. doi: 10.1007/BF00370299. [DOI] [PubMed] [Google Scholar]
- Ganapathy V., Burckhardt G., Leibach F. H. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J Biol Chem. 1984 Jul 25;259(14):8954–8959. [PubMed] [Google Scholar]
- Ganapathy V., Leibach F. H. Proton-coupled solute transport in the animal cell plasma membrane. Curr Opin Cell Biol. 1991 Aug;3(4):695–701. doi: 10.1016/0955-0674(91)90043-x. [DOI] [PubMed] [Google Scholar]
- Garrahan P. J., Pouchan M. I., Rega A. F. Potassium activated phosphatase from human red blood cells. The mechanism of potassium activation. J Physiol. 1969 Jun;202(2):305–327. doi: 10.1113/jphysiol.1969.sp008813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallman P. S., Perrin D. D., Watt A. E. The computed distribution of copper(II) and zinc(II) ions among seventeen amino acids present in human blood plasma. Biochem J. 1971 Feb;121(3):549–555. doi: 10.1042/bj1210549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
- Kalfakakou V., Simons T. J. Anionic mechanisms of zinc uptake across the human red cell membrane. J Physiol. 1990 Feb;421:485–497. doi: 10.1113/jphysiol.1990.sp017957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
- Kilberg M. S., Handlogten M. E., Christensen H. N. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem. 1980 May 10;255(9):4011–4019. [PubMed] [Google Scholar]
- Kitchens D. L., Dawson K., Reuss L. Zinc blocks apical membrane anion exchange in gallbladder epithelium. Am J Physiol. 1990 May;258(5 Pt 1):G745–G752. doi: 10.1152/ajpgi.1990.258.5.G745. [DOI] [PubMed] [Google Scholar]
- Kramers M. T., Robinson G. B. Studies on the structure of the rabbit kidney brush border. Eur J Biochem. 1979 Sep;99(2):345–351. doi: 10.1111/j.1432-1033.1979.tb13262.x. [DOI] [PubMed] [Google Scholar]
- Liedtke C. M., Hopfer U. Mechanism of Cl- translocation across small intestinal brush-border membrane. II. Demonstration of Cl--OH- exchange and Cl- conductance. Am J Physiol. 1982 Mar;242(3):G272–G280. doi: 10.1152/ajpgi.1982.242.3.G272. [DOI] [PubMed] [Google Scholar]
- Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
- Menard M. P., Cousins R. J. Effect of citrate, glutathione and picolinate on zinc transport by brush border membrane vesicles from rat intestine. J Nutr. 1983 Aug;113(8):1653–1656. doi: 10.1093/jn/113.8.1653. [DOI] [PubMed] [Google Scholar]
- Reuss L., Costantin J. L., Bazile J. E. Diphenylamine-2-carboxylate blocks Cl(-)-HCO3- exchange in Necturus gallbladder epithelium. Am J Physiol. 1987 Jul;253(1 Pt 1):C79–C89. doi: 10.1152/ajpcell.1987.253.1.C79. [DOI] [PubMed] [Google Scholar]
- Song M. K., Adham N. F., Ament M. E. Relative zinc-binding activities of ligands in the cytosol of rat small intestine. Comp Biochem Physiol C. 1986;85(2):283–289. doi: 10.1016/0742-8413(86)90195-7. [DOI] [PubMed] [Google Scholar]
- Song M. K., Lee D. B., Adham N. F. Influence of prostaglandins on unidirectional zinc fluxes across the small intestine of the rat. Br J Nutr. 1988 May;59(3):417–428. doi: 10.1079/bjn19880050. [DOI] [PubMed] [Google Scholar]
- Tacnet F., Watkins D. W., Ripoche P. Studies of zinc transport into brush-border membrane vesicles isolated from pig small intestine. Biochim Biophys Acta. 1990 May 24;1024(2):323–330. doi: 10.1016/0005-2736(90)90361-q. [DOI] [PubMed] [Google Scholar]
- Tacnet F., Watkins D. W., Ripoche P. Zinc binding in intestinal brush-border membrane isolated from pig. Biochim Biophys Acta. 1991 Mar 18;1063(1):51–59. doi: 10.1016/0005-2736(91)90352-9. [DOI] [PubMed] [Google Scholar]
- Torrubia J. O., Garay R. Evidence for a major route for zinc uptake in human red blood cells: [Zn(HCO3)2Cl]- influx through the [Cl-/HCO3-] anion exchanger. J Cell Physiol. 1989 Feb;138(2):316–322. doi: 10.1002/jcp.1041380214. [DOI] [PubMed] [Google Scholar]
- Wapnir R. A., Khani D. E., Bayne M. A., Lifshitz F. Absorption of zinc by the rat ileum: effects of histidine and other low-molecular-weight ligands. J Nutr. 1983 Jul;113(7):1346–1354. doi: 10.1093/jn/113.7.1346. [DOI] [PubMed] [Google Scholar]
- Wapnir R. A., Lee S. Y., Stiel L. Intestinal absorption of zinc: sodium-metal-ligand interactions. Biochem Med Metab Biol. 1989 Oct;42(2):146–160. doi: 10.1016/0885-4505(89)90050-9. [DOI] [PubMed] [Google Scholar]
- Wapnir R. A., Stiel L. Zinc intestinal absorption in rats: specificity of amino acids as ligands. J Nutr. 1986 Nov;116(11):2171–2179. doi: 10.1093/jn/116.11.2171. [DOI] [PubMed] [Google Scholar]
- Wieth J. O. Effect of some monovalent anions on chloride and sulphate permeability of human red cells. J Physiol. 1970 May;207(3):581–609. doi: 10.1113/jphysiol.1970.sp009082. [DOI] [PMC free article] [PubMed] [Google Scholar]
