Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Jun;465:57–72. doi: 10.1113/jphysiol.1993.sp019666

Mechanisms of zinc transport into pig small intestine brush-border membrane vesicles.

F Tacnet 1, F Lauthier 1, P Ripoche 1
PMCID: PMC1175419  PMID: 8229851

Abstract

1. The purpose of the present work was to examine certain membrane transport mechanisms likely to carry zinc across the brush-border membrane of pig small intestine, isolated in a vesicular form. 2. In initial velocity conditions, saturation kinetics revealed a great effect of pH on zinc transport: optimal conditions were observed with an intravesicular pH of around 6.6 with or without a H+ gradient; however, this did not allow us to conclude the existence of a neutral exchange between Zn2+ and H+ ions. 3. By measuring 36Cl uptakes, the presence of the Cl(-)-HCO3- or Cl(-)-OH-antiporter with typical 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) sensitivity was detected in vesicles; zinc did not alter this anionic exchange activity. A 65Zn time course, performed in conditions identical with those for 36Cl uptake, was DIDS insensitive and was greatly inhibited by an outward OH- gradient. This could argue against a transport of zinc as a complex with Cl- and HCO3- through the anion antiporter. 4. When external Cl- and HCO3- were replaced by SCN-, able to form a Zn(SCN)4(2-) complex, we observed a stimulating effect of outward HCO3- gradients on 65Zn uptake but neither DIDS nor diphenylamine-2-carboxylate (DPC) inhibited the transport in these conditions. This suggested that the intestinal anion antiporter was not a major route for zinc reabsorption. 5. The tripeptide Gly-Gly-His at low concentrations stimulated 65Zn uptake, then inhibited it in a dose-dependent manner either in the presence of an inward H+ gradient or in the presence of a membrane potential 'negative inside' or in both situations. These conditions are necessary for the active transport of the peptide and this strongly suggests that zinc can be transported as a [Gly-Gly-His-Zn] complex, utilizing the peptide carrier system.

Full text

PDF
57

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken S. P., Horn N. M., Saunders N. R. Effects of amino acids on zinc transport in rat erythrocytes. J Physiol. 1992 Jan;445:69–80. doi: 10.1113/jphysiol.1992.sp018912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beck J. C., Sacktor B. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem. 1978 Aug 10;253(15):5531–5535. [PubMed] [Google Scholar]
  3. Binder H. J., Murer H. Potassium/proton exchange in brush-border membrane of rat ileum. J Membr Biol. 1986;91(1):77–84. doi: 10.1007/BF01870217. [DOI] [PubMed] [Google Scholar]
  4. Blakeborough P., Salter D. N. The intestinal transport of zinc studied using brush-border-membrane vesicles from the piglet. Br J Nutr. 1987 Jan;57(1):45–55. doi: 10.1079/bjn19870008. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Cousins R. J. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985 Apr;65(2):238–309. doi: 10.1152/physrev.1985.65.2.238. [DOI] [PubMed] [Google Scholar]
  7. DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
  8. Eriksson A. E., Kylsten P. M., Jones T. A., Liljas A. Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCN- ion to the zinc at high pH. Proteins. 1988;4(4):283–293. doi: 10.1002/prot.340040407. [DOI] [PubMed] [Google Scholar]
  9. Forsyth G. W., Gabriel S. E. Chloride ion transport into pig jejunal brush-border membrane vesicles. J Physiol. 1988 Aug;402:555–564. doi: 10.1113/jphysiol.1988.sp017221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gachot B., Tauc M., Morat L., Poujeol P. Zinc uptake by proximal cells isolated from rabbit kidney: effects of cysteine and histidine. Pflugers Arch. 1991 Dec;419(6):583–587. doi: 10.1007/BF00370299. [DOI] [PubMed] [Google Scholar]
  11. Ganapathy V., Burckhardt G., Leibach F. H. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J Biol Chem. 1984 Jul 25;259(14):8954–8959. [PubMed] [Google Scholar]
  12. Ganapathy V., Leibach F. H. Proton-coupled solute transport in the animal cell plasma membrane. Curr Opin Cell Biol. 1991 Aug;3(4):695–701. doi: 10.1016/0955-0674(91)90043-x. [DOI] [PubMed] [Google Scholar]
  13. Garrahan P. J., Pouchan M. I., Rega A. F. Potassium activated phosphatase from human red blood cells. The mechanism of potassium activation. J Physiol. 1969 Jun;202(2):305–327. doi: 10.1113/jphysiol.1969.sp008813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hallman P. S., Perrin D. D., Watt A. E. The computed distribution of copper(II) and zinc(II) ions among seventeen amino acids present in human blood plasma. Biochem J. 1971 Feb;121(3):549–555. doi: 10.1042/bj1210549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hopfer U., Nelson K., Perrotto J., Isselbacher K. J. Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem. 1973 Jan 10;248(1):25–32. [PubMed] [Google Scholar]
  16. Kalfakakou V., Simons T. J. Anionic mechanisms of zinc uptake across the human red cell membrane. J Physiol. 1990 Feb;421:485–497. doi: 10.1113/jphysiol.1990.sp017957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
  18. Kilberg M. S., Handlogten M. E., Christensen H. N. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem. 1980 May 10;255(9):4011–4019. [PubMed] [Google Scholar]
  19. Kitchens D. L., Dawson K., Reuss L. Zinc blocks apical membrane anion exchange in gallbladder epithelium. Am J Physiol. 1990 May;258(5 Pt 1):G745–G752. doi: 10.1152/ajpgi.1990.258.5.G745. [DOI] [PubMed] [Google Scholar]
  20. Kramers M. T., Robinson G. B. Studies on the structure of the rabbit kidney brush border. Eur J Biochem. 1979 Sep;99(2):345–351. doi: 10.1111/j.1432-1033.1979.tb13262.x. [DOI] [PubMed] [Google Scholar]
  21. Liedtke C. M., Hopfer U. Mechanism of Cl- translocation across small intestinal brush-border membrane. II. Demonstration of Cl--OH- exchange and Cl- conductance. Am J Physiol. 1982 Mar;242(3):G272–G280. doi: 10.1152/ajpgi.1982.242.3.G272. [DOI] [PubMed] [Google Scholar]
  22. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  23. Menard M. P., Cousins R. J. Effect of citrate, glutathione and picolinate on zinc transport by brush border membrane vesicles from rat intestine. J Nutr. 1983 Aug;113(8):1653–1656. doi: 10.1093/jn/113.8.1653. [DOI] [PubMed] [Google Scholar]
  24. Reuss L., Costantin J. L., Bazile J. E. Diphenylamine-2-carboxylate blocks Cl(-)-HCO3- exchange in Necturus gallbladder epithelium. Am J Physiol. 1987 Jul;253(1 Pt 1):C79–C89. doi: 10.1152/ajpcell.1987.253.1.C79. [DOI] [PubMed] [Google Scholar]
  25. Song M. K., Adham N. F., Ament M. E. Relative zinc-binding activities of ligands in the cytosol of rat small intestine. Comp Biochem Physiol C. 1986;85(2):283–289. doi: 10.1016/0742-8413(86)90195-7. [DOI] [PubMed] [Google Scholar]
  26. Song M. K., Lee D. B., Adham N. F. Influence of prostaglandins on unidirectional zinc fluxes across the small intestine of the rat. Br J Nutr. 1988 May;59(3):417–428. doi: 10.1079/bjn19880050. [DOI] [PubMed] [Google Scholar]
  27. Tacnet F., Watkins D. W., Ripoche P. Studies of zinc transport into brush-border membrane vesicles isolated from pig small intestine. Biochim Biophys Acta. 1990 May 24;1024(2):323–330. doi: 10.1016/0005-2736(90)90361-q. [DOI] [PubMed] [Google Scholar]
  28. Tacnet F., Watkins D. W., Ripoche P. Zinc binding in intestinal brush-border membrane isolated from pig. Biochim Biophys Acta. 1991 Mar 18;1063(1):51–59. doi: 10.1016/0005-2736(91)90352-9. [DOI] [PubMed] [Google Scholar]
  29. Torrubia J. O., Garay R. Evidence for a major route for zinc uptake in human red blood cells: [Zn(HCO3)2Cl]- influx through the [Cl-/HCO3-] anion exchanger. J Cell Physiol. 1989 Feb;138(2):316–322. doi: 10.1002/jcp.1041380214. [DOI] [PubMed] [Google Scholar]
  30. Wapnir R. A., Khani D. E., Bayne M. A., Lifshitz F. Absorption of zinc by the rat ileum: effects of histidine and other low-molecular-weight ligands. J Nutr. 1983 Jul;113(7):1346–1354. doi: 10.1093/jn/113.7.1346. [DOI] [PubMed] [Google Scholar]
  31. Wapnir R. A., Lee S. Y., Stiel L. Intestinal absorption of zinc: sodium-metal-ligand interactions. Biochem Med Metab Biol. 1989 Oct;42(2):146–160. doi: 10.1016/0885-4505(89)90050-9. [DOI] [PubMed] [Google Scholar]
  32. Wapnir R. A., Stiel L. Zinc intestinal absorption in rats: specificity of amino acids as ligands. J Nutr. 1986 Nov;116(11):2171–2179. doi: 10.1093/jn/116.11.2171. [DOI] [PubMed] [Google Scholar]
  33. Wieth J. O. Effect of some monovalent anions on chloride and sulphate permeability of human red cells. J Physiol. 1970 May;207(3):581–609. doi: 10.1113/jphysiol.1970.sp009082. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES