Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Jun;465:343–357. doi: 10.1113/jphysiol.1993.sp019680

Roles of sympathetic nervous system in the suppression of cytotoxicity of splenic natural killer cells in the rat.

T Katafuchi 1, S Take 1, T Hori 1
PMCID: PMC1175433  PMID: 8229839

Abstract

1. We previously demonstrated that a central injection of interferon-alpha in rats induced a suppression of cytotoxicity of splenic natural killer cells which depended upon intact splenic sympathetic innervation, suggesting the important role of the splenic nerve in immunosuppression. To further study the mechanisms of this phenomenon, we investigated: (1) the effects of a central injection of recombinant human interferon-alpha on the electrical activity of the splenic nerve, and (2) the responses of splenic natural killer cytotoxicity on the electrical stimulation of the splenic nerve in urethane with alpha-chloralose anaesthetized rats. 2. An injection of recombinant human interferon-alpha (1.5 x 10(3) and 6.0 x 10(3) units (u) per rat) into the third cerebral ventricle produced a sustained and long lasting (at least for more than 60 min) increase in the electrical activity of splenic sympathetic nerve filaments in a dose-dependent manner. Following an intra-third-ventricular injection of recombinant human interferon-alpha at a dose of 6.0 x 10(3) u, the efferent discharges were elevated 2-6 times that of the pre-injection level with a mean onset latency of 12 min (8-16 min). No changes in the arterial blood pressure and body temperature were observed after injections of recombinant human interferon-alpha. 3. The excitation of the nerve activity induced by intra-ventricular recombinant human interferon-alpha was reversibly suppressed by an intravenous injection of an opioid antagonist, naloxone (1 mg/kg in 0.1 ml saline), whereas the injection of naloxone alone did not affect either the baseline level of the nerve activity or the systemic blood pressure. 4. The cytotoxicity of natural killer cells in the spleen measured by a standard chromium release assay was reduced 20 min after the laparotomy alone in anaesthetized rats. The reduced natural killer activity then recovered significantly when the splenic nerve was cut immediately after the laparotomy. When the peripheral cut end of the splenic nerve was subsequently stimulated (0.5 mA, 0.5 ms, 20 Hz for 20 min), a further suppression of natural killer cytotoxicity was observed. 5. The reduction of natural killer cytotoxicity produced by the stimulation of the splenic nerve was completely blocked by an intravenous injection of nadolol (a peripherally acting beta-adrenergic receptor antagonist), but not by that of prazosin (an alpha-antagonist). 6. These results indicate that a central injection of recombinant human interferon-alpha activates the splenic sympathetic nerve through brain opioid receptors and thereby suppresses the natural killer cytotoxicity by beta-adrenergic mechanisms.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
343

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellinger D. L., Felten S. Y., Lorton D., Felten D. L. Origin of noradrenergic innervation of the spleen in rats. Brain Behav Immun. 1989 Dec;3(4):291–311. doi: 10.1016/0889-1591(89)90029-9. [DOI] [PubMed] [Google Scholar]
  2. Blalock J. E., Smith E. M. Human leukocyte interferon (HuIFN-alpha): potent endorphin-like opioid activity. Biochem Biophys Res Commun. 1981 Jul 30;101(2):472–478. doi: 10.1016/0006-291x(81)91284-5. [DOI] [PubMed] [Google Scholar]
  3. Bloom S. R., Edwards A. V. Characteristics of the neuroendocrine responses to stimulation of the splanchnic nerves in bursts in the conscious calf. J Physiol. 1984 Jan;346:533–545. doi: 10.1113/jphysiol.1984.sp015039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom S. R., Edwards A. V., Jones C. T. Neuroendocrine responses to stimulation of the splanchnic nerves in bursts in conscious, adrenalectomized, weaned lambs. J Physiol. 1989 Oct;417:79–89. doi: 10.1113/jphysiol.1989.sp017791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dafny N., Lee J. R., Dougherty P. M. Immune response products alter CNS activity: interferon modulates central opioid functions. J Neurosci Res. 1988;19(1):130–139. doi: 10.1002/jnr.490190118. [DOI] [PubMed] [Google Scholar]
  6. Dinarello C. A., Bernheim H. A., Duff G. W., Le H. V., Nagabhushan T. L., Hamilton N. C., Coceani F. Mechanisms of fever induced by recombinant human interferon. J Clin Invest. 1984 Sep;74(3):906–913. doi: 10.1172/JCI111508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ernström U., Sandberg G. Effects of adrenergic alpha- and beta-receptor stimulation on the release of lymphocytes and granulocytes from the spleen. Scand J Haematol. 1973;11(4):275–286. doi: 10.1111/j.1600-0609.1973.tb00130.x. [DOI] [PubMed] [Google Scholar]
  8. Felten D. L., Felten S. Y., Bellinger D. L., Carlson S. L., Ackerman K. D., Madden K. S., Olschowki J. A., Livnat S. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol Rev. 1987 Dec;100:225–260. doi: 10.1111/j.1600-065x.1987.tb00534.x. [DOI] [PubMed] [Google Scholar]
  9. Frishman W. H. Nadolol: a new beta-adrenoceptor antagonist. N Engl J Med. 1981 Sep 17;305(12):678–682. doi: 10.1056/NEJM198109173051206. [DOI] [PubMed] [Google Scholar]
  10. Hadden J. W., Hadden E. M., Middleton E., Jr Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell Immunol. 1970 Dec;1(6):583–595. doi: 10.1016/0008-8749(70)90024-9. [DOI] [PubMed] [Google Scholar]
  11. Hellstrand K., Hermodsson S., Strannegård O. Evidence for a beta-adrenoceptor-mediated regulation of human natural killer cells. J Immunol. 1985 Jun;134(6):4095–4099. [PubMed] [Google Scholar]
  12. Hori T., Nakashima T., Take S., Kaizuka Y., Mori T., Katafuchi T. Immune cytokines and regulation of body temperature, food intake and cellular immunity. Brain Res Bull. 1991 Sep-Oct;27(3-4):309–313. doi: 10.1016/0361-9230(91)90117-3. [DOI] [PubMed] [Google Scholar]
  13. Irwin M., Hauger R. L., Brown M., Britton K. T. CRF activates autonomic nervous system and reduces natural killer cytotoxicity. Am J Physiol. 1988 Nov;255(5 Pt 2):R744–R747. doi: 10.1152/ajpregu.1988.255.5.R744. [DOI] [PubMed] [Google Scholar]
  14. Katafuchi T., Hori T., Take S. Central administration of interferon-alpha enhances rat sympathetic nerve activity to the spleen. Neurosci Lett. 1991 Apr 15;125(1):37–40. doi: 10.1016/0304-3940(91)90125-d. [DOI] [PubMed] [Google Scholar]
  15. Katsuura G., Arimura A., Koves K., Gottschall P. E. Involvement of organum vasculosum of lamina terminalis and preoptic area in interleukin 1 beta-induced ACTH release. Am J Physiol. 1990 Jan;258(1 Pt 1):E163–E171. doi: 10.1152/ajpendo.1990.258.1.E163. [DOI] [PubMed] [Google Scholar]
  16. Katz P., Zaytoun A. M., Fauci A. S. Mechanisms of human cell-mediated cytotoxicity. I. Modulation of natural killer cell activity by cyclic nucleotides. J Immunol. 1982 Jul;129(1):287–296. [PubMed] [Google Scholar]
  17. Krueger J. M., Dinarello C. A., Shoham S., Davenne D., Walter J., Kubillus S. Interferon alpha-2 enhances slow-wave sleep in rabbits. Int J Immunopharmacol. 1987;9(1):23–30. doi: 10.1016/0192-0561(87)90107-x. [DOI] [PubMed] [Google Scholar]
  18. Kuriyama K., Hori T., Mori T., Nakashima T. Actions of interferon alpha and interleukin- 1 beta on the glucose-responsive neurons in the ventromedial hypothalamus. Brain Res Bull. 1990 Jun;24(6):803–810. doi: 10.1016/0361-9230(90)90143-n. [DOI] [PubMed] [Google Scholar]
  19. Nakashima T., Hori T., Kuriyama K., Matsuda T. Effects of interferon-alpha on the activity of preoptic thermosensitive neurons in tissue slices. Brain Res. 1988 Jun 28;454(1-2):361–367. doi: 10.1016/0006-8993(88)90838-4. [DOI] [PubMed] [Google Scholar]
  20. Nance D. M., Burns J. Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav Immun. 1989 Dec;3(4):281–290. doi: 10.1016/0889-1591(89)90028-7. [DOI] [PubMed] [Google Scholar]
  21. Ninomiya I., Nisimaru N., Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Physiol. 1971 Nov;221(5):1346–1351. doi: 10.1152/ajplegacy.1971.221.5.1346. [DOI] [PubMed] [Google Scholar]
  22. Saito H. Innervation of the guinea pig spleen studied by electron microscopy. Am J Anat. 1990 Nov;189(3):213–235. doi: 10.1002/aja.1001890305. [DOI] [PubMed] [Google Scholar]
  23. Sanders V. M., Munson A. E. Norepinephrine and the antibody response. Pharmacol Rev. 1985 Sep;37(3):229–248. [PubMed] [Google Scholar]
  24. Simon E., Riedel W. Diversity of regional sympathetic outflow in integrative cardiovascular control: patterns and mechanisms. Brain Res. 1975 Apr 11;87(2-3):323–333. doi: 10.1016/0006-8993(75)90429-1. [DOI] [PubMed] [Google Scholar]
  25. Stewart W. E., 2nd, Sulkin S. E. Interferon production in hamsters experimentally infected with rabies virus. Proc Soc Exp Biol Med. 1966 Dec;123(3):650–654. doi: 10.3181/00379727-123-31568. [DOI] [PubMed] [Google Scholar]
  26. Stitt J. T. Evidence for the involvement of the organum vasculosum laminae terminalis in the febrile response of rabbits and rats. J Physiol. 1985 Nov;368:501–511. doi: 10.1113/jphysiol.1985.sp015872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sundar S. K., Cierpial M. A., Kilts C., Ritchie J. C., Weiss J. M. Brain IL-1-induced immunosuppression occurs through activation of both pituitary-adrenal axis and sympathetic nervous system by corticotropin-releasing factor. J Neurosci. 1990 Nov;10(11):3701–3706. doi: 10.1523/JNEUROSCI.10-11-03701.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Take S., Mori T., Kaizuka Y., Katafuchi T., Hori T. Central interferon alpha suppresses the cytotoxic activity of natural killer cells in the mouse spleen. Ann N Y Acad Sci. 1992 Apr 15;650:46–50. doi: 10.1111/j.1749-6632.1992.tb49093.x. [DOI] [PubMed] [Google Scholar]
  29. Uceda G., Artalejo A. R., López M. G., Abad F., Neher E., García A. G. Ca(2+)-activated K+ channels modulate muscarinic secretion in cat chromaffin cells. J Physiol. 1992 Aug;454:213–230. doi: 10.1113/jphysiol.1992.sp019261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Van Loon G. R., Appel N. M., Ho D. Beta-endorphin-induced increases in plasma epinephrine, norepinephrine and dopamine in rats: inhibition of adrenomedullary response by intracerebral somatostatin. Brain Res. 1981 May 11;212(1):207–214. doi: 10.1016/0006-8993(81)90053-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES