Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Jun;465:477–487. doi: 10.1113/jphysiol.1993.sp019688

Influence of body position on pressure and airflow generation during hypoxia and hypercapnia in man.

A Xie 1, Y Takasaki 1, J Popkin 1, D Orr 1, T D Bradley 1
PMCID: PMC1175441  PMID: 8229846

Abstract

1. Inspiratory oesophageal pressure and ventilatory responses to hyperoxic, progressive hypercapnic rebreathing (HCVR) and isocapnic, progressive hypoxic rebreathing (HVR) were studied in five normal males in both supine and upright seated positions. 2. No significant differences were found in the ventilatory response to hypercapnia between the supine and upright position. The slopes of the relationship between minute ventilation (VI) and the increase of end tidal PCO2 (delta P(ET), CO2) were 3.27 +/- 0.23 and 2.76 +/- 0.24 1 min-1 mmHg-1 supine and upright, respectively. However, the change in oesophageal pressure from the end expiratory level observed during quiet breathing to that at peak inspiration (delta P(oes), I) in relationship to delta P(ET),CO2 was greater supine than upright (1.23 +/- 0.07 versus 0.79 +/- 0.11 cmH2O mmHg-1, P < 0.01). 3. In contrast, during hypoxia-stimulated breathing the slope of the minute ventilation versus oxyhaemoglobin saturation curve (VI-Sa,O2) was flatter supine than upright (1.00 +/- 0.03 versus 1.75 +/- 0.05 l min-1 (percentage fall in Sa,O2)-1, P < 0.0001), but delta P(oes), I in relation to Sa,O2 during hypoxic rebreathing was similar supine and upright (0.38 +/- 0.03 versus 0.40 +/- 0.04 cmH2O (percentage fall in Sa,O2)-1, respectively. 4. It is concluded that body position does not affect the ventilatory response to progressive hyperoxic hypercapnia but does affect the relationship between delta P(oes), I and delta P(ET),CO2. In contrast, body position affects the ventilatory response to isocapnic progressive hypoxia, but does not affect the relationship between delta P(oes), I and Sa,O2.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATTINGER E. O., MONROE R. G., SEGAL M. S. The mechanics of breathing in different body positions. I. In normal subjects. J Clin Invest. 1956 Aug;35(8):904–911. doi: 10.1172/JCI103343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartlett D., Jr Effects of hypercapnia and hypoxia on laryngeal resistance to airflow. Respir Physiol. 1979 Aug;37(3):293–302. doi: 10.1016/0034-5687(79)90076-8. [DOI] [PubMed] [Google Scholar]
  3. Baydur A., Behrakis P. K., Zin W. A., Jaeger M., Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982 Nov;126(5):788–791. doi: 10.1164/arrd.1982.126.5.788. [DOI] [PubMed] [Google Scholar]
  4. Bellemare F., Grassino A. Effect of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol Respir Environ Exerc Physiol. 1982 Nov;53(5):1190–1195. doi: 10.1152/jappl.1982.53.5.1190. [DOI] [PubMed] [Google Scholar]
  5. Bishop B., Bachofen H. Comparative influence of proprioceptors and chemoreceptors in the control of respiratory muscles. Acta Neurobiol Exp (Wars) 1973;33(1):381–390. [PubMed] [Google Scholar]
  6. Bradley T. D., Chartrand D. A., Fitting J. W., Killian K. J., Grassino A. The relation of inspiratory effort sensation to fatiguing patterns of the diaphragm. Am Rev Respir Dis. 1986 Dec;134(6):1119–1124. doi: 10.1164/arrd.1986.134.5.1119. [DOI] [PubMed] [Google Scholar]
  7. Buchler B., Magder S., Roussos C. Effects of contraction frequency and duty cycle on diaphragmatic blood flow. J Appl Physiol (1985) 1985 Jan;58(1):265–273. doi: 10.1152/jappl.1985.58.1.265. [DOI] [PubMed] [Google Scholar]
  8. Bye P. T., Esau S. A., Walley K. R., Macklem P. T., Pardy R. L. Ventilatory muscles during exercise in air and oxygen in normal men. J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):464–471. doi: 10.1152/jappl.1984.56.2.464. [DOI] [PubMed] [Google Scholar]
  9. CHERNIACK R. M., SNIDAL D. P. The effect of obstruction to breathing on the ventilatory response to CO2. J Clin Invest. 1956 Nov;35(11):1286–1290. doi: 10.1172/JCI103383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chapman K. R., Rebuck A. S. Effect of posture on thoracoabdominal movements during CO2 rebreathing. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jan;56(1):97–101. doi: 10.1152/jappl.1984.56.1.97. [DOI] [PubMed] [Google Scholar]
  11. Chapman K. R., Rebuck A. S. Thoracoabdominal motion during progressive isocapnic hypoxia in conscious man. J Physiol. 1984 Apr;349:73–82. doi: 10.1113/jphysiol.1984.sp015143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fitting J. W., Chartrand D. A., Bradley T. D., Killian K. J., Grassino A. Effect of thoracoabdominal breathing patterns on inspiratory effort sensation. J Appl Physiol (1985) 1987 Apr;62(4):1665–1670. doi: 10.1152/jappl.1987.62.4.1665. [DOI] [PubMed] [Google Scholar]
  13. Freedman S., Dalton K. J., Holland D., Patton J. M. The effects of added elastic loads on the respiratory response to CO 2 in man. Respir Physiol. 1972 Apr;14(3):237–250. doi: 10.1016/0034-5687(72)90031-x. [DOI] [PubMed] [Google Scholar]
  14. GRANATH A., HORIE E., LINDERHOLM H. Compliance and resistance of the lungs in the sitting and supine positions at rest and during work. Scand J Clin Lab Invest. 1959;11:226–234. doi: 10.3109/00365515909060441. [DOI] [PubMed] [Google Scholar]
  15. Gillespie D. J., Lai Y. L., Hyatt R. E. Comparison of esophageal and pleural pressures in the anesthetized dog. J Appl Physiol. 1973 Nov;35(5):709–713. doi: 10.1152/jappl.1973.35.5.709. [DOI] [PubMed] [Google Scholar]
  16. Grassino A. E., Derenne J. P., Almirall J., Milic-Emili J., Whitelaw W. Configuration of the chest wall and occlusion pressures in awake humans. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):134–142. doi: 10.1152/jappl.1981.50.1.134. [DOI] [PubMed] [Google Scholar]
  17. Guz A., Noble M. I., Widdicombe J. G., Trenchard D., Mushin W. W. The effect of bilateral block of vagus and glossopharyngeal nerves on the ventilatory response to CO2 of conscious man. Respir Physiol. 1966;1(2):206–210. doi: 10.1016/0034-5687(66)90017-x. [DOI] [PubMed] [Google Scholar]
  18. Hurewitz A. N., Sidhu U., Bergofsky E. H., Chanana A. D. How alterations in pleural pressure influence esophageal pressure. J Appl Physiol Respir Environ Exerc Physiol. 1984 May;56(5):1162–1169. doi: 10.1152/jappl.1984.56.5.1162. [DOI] [PubMed] [Google Scholar]
  19. Killian K. J., Bucens D. D., Campbell E. J. Effect of breathing patterns on the perceived magnitude of added loads to breathing. J Appl Physiol Respir Environ Exerc Physiol. 1982 Mar;52(3):578–584. doi: 10.1152/jappl.1982.52.3.578. [DOI] [PubMed] [Google Scholar]
  20. Phillipson E. A., Hickey R. F., Bainton C. R., Nadel J. A. Effect of vagal blockade on regulation of breathing in conscious dogs. J Appl Physiol. 1970 Oct;29(4):475–479. doi: 10.1152/jappl.1970.29.4.475. [DOI] [PubMed] [Google Scholar]
  21. Read D. J. A clinical method for assessing the ventilatory response to carbon dioxide. Australas Ann Med. 1967 Feb;16(1):20–32. doi: 10.1111/imj.1967.16.1.20. [DOI] [PubMed] [Google Scholar]
  22. Rebuck A. S., Betts M., Saunders N. A. Effect of elastic loading on ventilatory response to hypoxia in conscious man. J Appl Physiol. 1975 Oct;39(4):548–551. doi: 10.1152/jappl.1975.39.4.548. [DOI] [PubMed] [Google Scholar]
  23. Rebuck A. S., Campbell E. J. A clinical method for assessing the ventilatory response to hypoxia. Am Rev Respir Dis. 1974 Mar;109(3):345–350. doi: 10.1164/arrd.1974.109.3.345. [DOI] [PubMed] [Google Scholar]
  24. Rebuck A. S., Juniper E. F. Effect of resistive loading on ventilatory response to hypoxia. J Appl Physiol. 1975 Jun;38(6):965–968. doi: 10.1152/jappl.1975.38.6.965. [DOI] [PubMed] [Google Scholar]
  25. Rigg J. R., Rebuck A. S., Campbell E. J. Effect of posture on the ventilatory response to CO2. J Appl Physiol. 1974 Oct;37(4):487–490. doi: 10.1152/jappl.1974.37.4.487. [DOI] [PubMed] [Google Scholar]
  26. Slutsky A. S., Goldstein R. G., Rebuck A. S. The effect of posture on the ventilatory response to hypoxia. Can Anaesth Soc J. 1980 Sep;27(5):445–448. doi: 10.1007/BF03007041. [DOI] [PubMed] [Google Scholar]
  27. Takasaki Y., Orr D., Popkin J., Xie A. L., Bradley T. D. Effect of hypercapnia and hypoxia on respiratory muscle activation in humans. J Appl Physiol (1985) 1989 Nov;67(5):1776–1784. doi: 10.1152/jappl.1989.67.5.1776. [DOI] [PubMed] [Google Scholar]
  28. Vincken W., Guilleminault C., Silvestri L., Cosio M., Grassino A. Inspiratory muscle activity as a trigger causing the airways to open in obstructive sleep apnea. Am Rev Respir Dis. 1987 Feb;135(2):372–377. doi: 10.1164/arrd.1987.135.2.372. [DOI] [PubMed] [Google Scholar]
  29. Weissman C., Abraham B., Askanazi J., Milic-Emili J., Hyman A. I., Kinney J. M. Effect of posture on the ventilatory response to CO2. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):761–765. doi: 10.1152/jappl.1982.53.3.761. [DOI] [PubMed] [Google Scholar]
  30. Wiley R. L., Zechman F. W., Jr Perception of added airflow resistance in humans. Respir Physiol. 1966 Dec;2(1):73–87. doi: 10.1016/0034-5687(66)90039-9. [DOI] [PubMed] [Google Scholar]
  31. Xie A. L., Takasaki Y., Popkin J., Orr D., Bradley T. D. Chemical and postural influence on scalene and diaphragmatic activation in humans. J Appl Physiol (1985) 1991 Feb;70(2):658–664. doi: 10.1152/jappl.1991.70.2.658. [DOI] [PubMed] [Google Scholar]
  32. Yoshiya I., Nakajima T., Nagai I., Jitsukawa S. A bidirectional respiratory flowmeter using the hot-wire principle. J Appl Physiol. 1975 Feb;38(2):360–365. doi: 10.1152/jappl.1975.38.2.360. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES