Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Jun;465:489–500. doi: 10.1113/jphysiol.1993.sp019689

Non-cholinergic nervous control of catecholamine secretion from perfused bovine adrenal glands.

P D Marley 1, K A Thomson 1, A Smardencas 1
PMCID: PMC1175442  PMID: 8229847

Abstract

1. Field stimulation of adrenal nerves was used to study nervous control of adrenal catecholamine secretion in isolated, retrogradely perfused, bovine adrenal glands. 2. Secretion of both adrenaline and noradrenaline was maximal at 10 Hz. Secretion at 2 Hz was < 10% of maximum. Stimulating with trains of pulses at ten times the average frequency for 1 s out of every 10 s gave 2-fold greater secretion at 2 Hz average frequency, similar release at 5 Hz, and only half the secretion at 10 Hz, compared to continuous stimulation at the average frequency. 3. At 10 Hz, adrenaline and noradrenaline secretion was virtually abolished by tetrodotoxin (1 microM), but was only reduced by 75% by prolonged perfusion with a combination of mecamylamine (5 microM) and atropine (1 microM). Mecamylamine and atropine completely abolished the secretory response to 2 Hz stimulation. Tetrodotoxin had no significant effect on secretion induced by perfusing glands with nicotine (5 microM), while mecamylamine abolished this response. Mecamylamine and atropine had no effect on secretion induced by K+ depolarization. 4. The secretion of adrenaline and noradrenaline induced by 10 Hz stimulation was not inhibited by naloxone at either 1 or 30 microM. 5. The results suggest that bovine adrenal chromaffin cells, like those in the rat, receive a significant non-cholinergic secretomotor innervation. In contrast to the rat, however, the non-cholinergic component in the bovine adrenal is negligible at low-frequency nerve stimulation and substantial at higher frequencies, and is not antagonized by naloxone. The identity of the non-cholinergic transmitter remains to be determined.

Full text

PDF
489

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blottner D., Baumgarten H. G. Nitric oxide synthetase (NOS)-containing sympathoadrenal cholinergic neurons of the rat IML-cell column: evidence from histochemistry, immunohistochemistry, and retrograde labeling. J Comp Neurol. 1992 Feb 1;316(1):45–55. doi: 10.1002/cne.903160105. [DOI] [PubMed] [Google Scholar]
  2. Brandt B. L., Hagiwara S., Kidokoro Y., Miyazaki S. Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol. 1976 Dec;263(3):417–439. doi: 10.1113/jphysiol.1976.sp011638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bunn S. J., Marley P. D., Livett B. G. Effects of opioid compounds on basal and muscarinic induced accumulation of inositol phosphates in cultured bovine chromaffin cells. Biochem Pharmacol. 1988 Feb 1;37(3):395–399. doi: 10.1016/0006-2952(88)90205-5. [DOI] [PubMed] [Google Scholar]
  4. Bunn S. J., Marley P. D., Livett B. G. The distribution of opioid binding subtypes in the bovine adrenal medulla. Neuroscience. 1988 Dec;27(3):1081–1094. doi: 10.1016/0306-4522(88)90212-6. [DOI] [PubMed] [Google Scholar]
  5. Burgoyne R. D. Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta. 1991 Jul 22;1071(2):174–202. doi: 10.1016/0304-4157(91)90024-q. [DOI] [PubMed] [Google Scholar]
  6. Edwards A. V. Adrenal catecholamine output in response to stimulation of the splanchnic nerve in bursts in the conscious calf. J Physiol. 1982 Jun;327:409–419. doi: 10.1113/jphysiol.1982.sp014239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards A. V., Jones C. T. Adrenal responses to splanchnic nerve stimulation in conscious calves given naloxone. J Physiol. 1989 Nov;418:339–351. doi: 10.1113/jphysiol.1989.sp017844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feldberg W., Minz B., Tsudzimura H. The mechanism of the nervous discharge of adrenaline. J Physiol. 1934 Jun 9;81(3):286–304. doi: 10.1113/jphysiol.1934.sp003136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kidokoro Y., Ritchie A. K. Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J Physiol. 1980 Oct;307:199–216. doi: 10.1113/jphysiol.1980.sp013431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kidokoro Y., Ritchie A. K., Hagiwara S. Effect of tetrodotoxin on adrenaline secretion in the perfused rat adrenal medulla. Nature. 1979 Mar 1;278(5699):63–65. doi: 10.1038/278063a0. [DOI] [PubMed] [Google Scholar]
  12. Kilpatrick D. L. Ion channels and membrane potential in stimulus-secretion coupling in adrenal paraneurons. Can J Physiol Pharmacol. 1984 Apr;62(4):477–483. doi: 10.1139/y84-077. [DOI] [PubMed] [Google Scholar]
  13. Kumakura K., Karoum F., Guidotti A., Costa E. Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells. Nature. 1980 Jan 31;283(5746):489–492. doi: 10.1038/283489a0. [DOI] [PubMed] [Google Scholar]
  14. Lewis R. V., Stern A. S. Biosynthesis of the enkephalins and enkephalin-containing polypeptides. Annu Rev Pharmacol Toxicol. 1983;23:353–372. doi: 10.1146/annurev.pa.23.040183.002033. [DOI] [PubMed] [Google Scholar]
  15. Malhotra R. K., Wakade A. R. Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone. J Physiol. 1987 Feb;383:639–652. doi: 10.1113/jphysiol.1987.sp016434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Malhotra R. K., Wakade A. R. Vasoactive intestinal polypeptide stimulates the secretion of catecholamines from the rat adrenal gland. J Physiol. 1987 Jul;388:285–294. doi: 10.1113/jphysiol.1987.sp016615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marley P. D., Bunn S. J., Wan D. C., Allen A. M., Mendelsohn F. A. Localization of angiotensin II binding sites in the bovine adrenal medulla using a labelled specific antagonist. Neuroscience. 1989;28(3):777–787. doi: 10.1016/0306-4522(89)90022-5. [DOI] [PubMed] [Google Scholar]
  18. Marley P. D., Mitchelhill K. I., Livett B. G. Effects of opioid peptides containing the sequence of Met5-enkephalin or Leu5-enkephalin on nicotine-induced secretion from bovine adrenal chromaffin cells. J Neurochem. 1986 Jan;46(1):1–11. doi: 10.1111/j.1471-4159.1986.tb12918.x. [DOI] [PubMed] [Google Scholar]
  19. Marley P. D., Mitchelhill K. I., Livett B. G. Metorphamide, a novel endogenous adrenal opioid peptide, inhibits nicotine-induced secretion from bovine adrenal chromaffin cells. Brain Res. 1986 Jan 15;363(1):10–17. doi: 10.1016/0006-8993(86)90653-0. [DOI] [PubMed] [Google Scholar]
  20. Marley P., Livett B. G. Neuropeptides in the autonomic nervous system. CRC Crit Rev Clin Neurobiol. 1985;1(3):201–283. [PubMed] [Google Scholar]
  21. Maurer R., Reubi J. C. Distribution and coregulation of three peptide receptors in adrenals. Eur J Pharmacol. 1986 Jun 17;125(2):241–247. doi: 10.1016/0014-2999(86)90033-6. [DOI] [PubMed] [Google Scholar]
  22. Maurer R., Reubi J. C. Somatostatin receptors in the adrenal. Mol Cell Endocrinol. 1986 Apr;45(1):81–90. doi: 10.1016/0303-7207(86)90086-9. [DOI] [PubMed] [Google Scholar]
  23. Schultzberg M., Lundberg J. M., Hökfelt T., Terenius L., Brandt J., Elde R. P., Goldstein M. Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience. 1978;3(12):1169–1186. doi: 10.1016/0306-4522(78)90137-9. [DOI] [PubMed] [Google Scholar]
  24. Wakade A. R. Facilitation of secretion of catecholamines from rat and guinea-pig adrenal glands in potassium-free medium or after ouabain. J Physiol. 1981;313:481–498. doi: 10.1113/jphysiol.1981.sp013677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wakade A. R. Noncholinergic transmitter(s) maintains secretion of catecholamines from rat adrenal medulla for several hours of continuous stimulation of splanchnic neurons. J Neurochem. 1988 Apr;50(4):1302–1308. doi: 10.1111/j.1471-4159.1988.tb10608.x. [DOI] [PubMed] [Google Scholar]
  26. Wakade A. R. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol. 1981;313:463–480. doi: 10.1113/jphysiol.1981.sp013676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wakade A. R., Wakade T. D. Secretion of catecholamines from adrenal gland by a single electrical shock: electronic depolarization of medullary cell membrane. Proc Natl Acad Sci U S A. 1982 May;79(9):3071–3074. doi: 10.1073/pnas.79.9.3071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wakade T. D., Blank M. A., Malhotra R. K., Pourcho R., Wakade A. R. The peptide VIP is a neurotransmitter in rat adrenal medulla: physiological role in controlling catecholamine secretion. J Physiol. 1991 Dec;444:349–362. doi: 10.1113/jphysiol.1991.sp018882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Watanabe T., Masuo Y., Matsumoto H., Suzuki N., Ohtaki T., Masuda Y., Kitada C., Tsuda M., Fujino M. Pituitary adenylate cyclase activating polypeptide provokes cultured rat chromaffin cells to secrete adrenaline. Biochem Biophys Res Commun. 1992 Jan 15;182(1):403–411. doi: 10.1016/s0006-291x(05)80159-7. [DOI] [PubMed] [Google Scholar]
  30. Wilson S. P. Vasoactive intestinal peptide elevates cyclic AMP levels and potentiates secretion in bovine adrenal chromaffin cells. Neuropeptides. 1988 Jan;11(1):17–21. doi: 10.1016/0143-4179(88)90023-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES