Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Jun;465:715–730. doi: 10.1113/jphysiol.1993.sp019702

Interaction between central pattern generators for breathing and swallowing in the cat.

T E Dick 1, Y Oku 1, J R Romaniuk 1, N S Cherniack 1
PMCID: PMC1175455  PMID: 8229859

Abstract

1. We examined the interaction between central pattern generators for respiration and deglutition in decerebrate, vagotomized, paralysed and ventilated cats (n = 10), by recording activity from the following nerves: hypoglossal, phrenic, thyroarytenoid and triangularis sterni. Fictive breathing was spontaneous with carbon dioxide above the apnoeic threshold (end-tidal PCO2, 32 +/- 4 mmHg) and fictive swallowing was induced by stimulating the internal branch of the left superior laryngeal nerve (SLN) continuously (0.2 ms pulse duration, 10 Hz). 2. In all ten animals, SLN stimulation evoked short bursts of thyroarytenoid and hypoglossal nerve activity indicative of fictive swallowing. In two of ten animals, respiration was inhibited completely during deglutition. In the other eight animals, fictive breathing and swallowing occurred simultaneously. 3. With SLN stimulation below threshold for eliciting swallowing, the respiratory rhythm decreased, the duration of inspiration did not change but the duration of expiration, especially stage II, increased. Integrated nerve activities indicated that the rate of rise and peak of phrenic nerve activity decreased, stage I expiratory activity of the thyroarytenoid and especially that of the hypoglossal nerve increased and stage II expiratory activity of the triangularis sterni nerve was suppressed completely. However, if inspired carbon dioxide was increased, i.e. hypercapnic ventilation, stage II expiratory activity remained partially during continuous SLN stimulation. 4. Fictive-swallowing bursts occurred only at respiratory phase transitions. At the minimal stimulus intensity that evoked repetitive swallowing bursts, the pattern of interaction between breathing and swallowing central pattern generators was consistent for each animal (n = 7) but was different across animals. In four animals, fictive swallows occurred at the phase transition between stage II expiration and inspiration, at the transition between inspiration and stage I expiration in one animal; and in two other animals, at the transition between stage I and II of expiration. 5. The response to SLN stimulation accommodated during the stimulus train. Accommodation was evident in both the interswallow interval (ISI) which lengthened, and the interaction pattern which had fewer swallows per breath as the stimulus period progressed. In contrast to the ISI, characteristics of the fictive swallow did not accommodate. For example, duration of the swallow was constant, distributed over a narrow range throughout the stimulus train. 6. We conclude that the central pattern generators for swallowing and breathing interact. The pattern of interaction supports the three-phase theory of respiratory pattern generation.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
715

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amri M., Lamkadem M., Car A. Effects of lingual nerve and chewing cortex stimulation upon activity of the swallowing neurons located in the region of the hypoglossal motor nucleus. Brain Res. 1991 May 10;548(1-2):149–155. doi: 10.1016/0006-8993(91)91116-i. [DOI] [PubMed] [Google Scholar]
  2. Bongianni F., Corda M., Fontana G., Pantaleo T. Influences of superior laryngeal afferent stimulation on expiratory activity in cats. J Appl Physiol (1985) 1988 Jul;65(1):385–392. doi: 10.1152/jappl.1988.65.1.385. [DOI] [PubMed] [Google Scholar]
  3. DOTY R. W. Influence of stimulus pattern on reflex deglutition. Am J Physiol. 1951 Jul;166(1):142–158. doi: 10.1152/ajplegacy.1951.166.1.142. [DOI] [PubMed] [Google Scholar]
  4. Delcomyn F. Neural basis of rhythmic behavior in animals. Science. 1980 Oct 31;210(4469):492–498. doi: 10.1126/science.7423199. [DOI] [PubMed] [Google Scholar]
  5. Donnelly D. F., Haddad G. G. Effect of graded anesthesia on laryngeal-induced central apnea. Respir Physiol. 1986 Nov;66(2):235–245. doi: 10.1016/0034-5687(86)90076-9. [DOI] [PubMed] [Google Scholar]
  6. Ezure K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog Neurobiol. 1990;35(6):429–450. doi: 10.1016/0301-0082(90)90030-k. [DOI] [PubMed] [Google Scholar]
  7. Fontana G. A., Pantaleo T., Bongianni F., Cresci F., Viroli L., Saragó G. Changes in respiratory activity induced by mastication in humans. J Appl Physiol (1985) 1992 Feb;72(2):779–786. doi: 10.1152/jappl.1992.72.2.779. [DOI] [PubMed] [Google Scholar]
  8. Gauthier P., Barillot J. C., Dussardier M. Mise en évidence électrophysiologique de bifurcations d'axone dans le nerf récurrent laryngé. J Physiol (Paris) 1980;76(1):39–48. [PubMed] [Google Scholar]
  9. Grélot L., Barillot J. C., Bianchi A. L. Pharyngeal motoneurones: respiratory-related activity and responses to laryngeal afferents in the decerebrate cat. Exp Brain Res. 1989;78(2):336–344. doi: 10.1007/BF00228905. [DOI] [PubMed] [Google Scholar]
  10. HUKUHARA T., OKADA H. Effects of deglutition upon the spike discharges of neurones in the respiratory center. Jpn J Physiol. 1956 Jun 15;6(2):162–166. doi: 10.2170/jjphysiol.6.162. [DOI] [PubMed] [Google Scholar]
  11. Hwang J. C., Zhou D., St John W. M. Characterization of expiratory intercostal activity to triangularis sterni in cats. J Appl Physiol (1985) 1989 Oct;67(4):1518–1524. doi: 10.1152/jappl.1989.67.4.1518. [DOI] [PubMed] [Google Scholar]
  12. Iscoe S., Feldman J. L., Cohen M. I. Properties of inspiratory termination by superior laryngeal and vagal stimulation. Respir Physiol. 1979 Apr;36(3):353–366. doi: 10.1016/0034-5687(79)90047-1. [DOI] [PubMed] [Google Scholar]
  13. Jean A. Control of the central swallowing program by inputs from the peripheral receptors. A review. J Auton Nerv Syst. 1984 May-Jun;10(3-4):225–233. doi: 10.1016/0165-1838(84)90017-1. [DOI] [PubMed] [Google Scholar]
  14. Jodkowski J. S., Berger A. J. Influences from laryngeal afferents on expiratory bulbospinal neurons and motoneurons. J Appl Physiol (1985) 1988 Apr;64(4):1337–1345. doi: 10.1152/jappl.1988.64.4.1337. [DOI] [PubMed] [Google Scholar]
  15. KAWASAKI M., OGURA J. H., TAKENOUCHI S. NEUROPHYSIOLOGIC OBSERVATIONS OF NORMAL DEGLUTITION. I. ITS RELATIONSHIP TO THE RESPIRATORY CYCLE. Laryngoscope. 1964 Dec;74:1747–1765. doi: 10.1288/00005537-196412000-00004. [DOI] [PubMed] [Google Scholar]
  16. König S., Czachurski J., Dembowsky K. Inhibition of cardiac sympathetic nerve activity during swallowing evoked by laryngeal afferent stimulation in the cat. Neurosci Lett. 1990 Oct 16;118(2):265–268. doi: 10.1016/0304-3940(90)90643-n. [DOI] [PubMed] [Google Scholar]
  17. Lawson E. E., Richter D. W., Czyzyk-Krzeska M. F., Bischoff A., Rudesill R. C. Respiratory neuronal activity during apnea and other breathing patterns induced by laryngeal stimulation. J Appl Physiol (1985) 1991 Jun;70(6):2742–2749. doi: 10.1152/jappl.1991.70.6.2742. [DOI] [PubMed] [Google Scholar]
  18. Miller A. J. Deglutition. Physiol Rev. 1982 Jan;62(1):129–184. doi: 10.1152/physrev.1982.62.1.129. [DOI] [PubMed] [Google Scholar]
  19. Miller A. J., Loizzi R. F. Anatomical and functional differentiation of superior laryngeal nerve fibers affecting swallowing and respiration. Exp Neurol. 1974 Feb;42(2):369–387. doi: 10.1016/0014-4886(74)90033-8. [DOI] [PubMed] [Google Scholar]
  20. Nishino T., Hiraga K. Coordination of swallowing and respiration in unconscious subjects. J Appl Physiol (1985) 1991 Mar;70(3):988–993. doi: 10.1152/jappl.1991.70.3.988. [DOI] [PubMed] [Google Scholar]
  21. Nishino T., Yonezawa T., Honda Y. Effects of swallowing on the pattern of continuous respiration in human adults. Am Rev Respir Dis. 1985 Dec;132(6):1219–1222. doi: 10.1164/arrd.1985.132.6.1219. [DOI] [PubMed] [Google Scholar]
  22. Oku Y., Dick T. E., Cherniack N. S. Phase-dependent dynamic responses of respiratory motor activities following perturbation of the cycle in the cat. J Physiol. 1993 Feb;461:321–337. doi: 10.1113/jphysiol.1993.sp019516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pantaleo T., Corda M. Expiration-related neurons in the region of the retrofacial nucleus: vagal and laryngeal inhibitory influences. Brain Res. 1985 Dec 16;359(1-2):343–346. doi: 10.1016/0006-8993(85)91447-7. [DOI] [PubMed] [Google Scholar]
  24. Remmers J. E., Richter D. W., Ballantyne D., Bainton C. R., Klein J. P. Reflex prolongation of stage I of expiration. Pflugers Arch. 1986 Aug;407(2):190–198. doi: 10.1007/BF00580675. [DOI] [PubMed] [Google Scholar]
  25. Richter D. W., Ballantyne D., Remmers J. E. The differential organization of medullary post-inspiratory activities. Pflugers Arch. 1987 Nov;410(4-5):420–427. doi: 10.1007/BF00586520. [DOI] [PubMed] [Google Scholar]
  26. SUMI T. The activity of brain-stem respiratory neurons and spinal respiratory motoneurons during swallowing. J Neurophysiol. 1963 May;26:466–477. doi: 10.1152/jn.1963.26.3.466. [DOI] [PubMed] [Google Scholar]
  27. Sherrey J. H., Megirian D. Spontaneous and reflexly evoked activity in pharyngeal, laryngeal, and phrenic motoneurons of cat. Exp Neurol. 1974 Jan;42(1):17–27. doi: 10.1016/0014-4886(74)90003-x. [DOI] [PubMed] [Google Scholar]
  28. Sica A. L., Cohen M. I., Donnelly D. F., Zhang H. Hypoglossal motoneuron responses to pulmonary and superior laryngeal afferent inputs. Respir Physiol. 1984 Jun;56(3):339–357. doi: 10.1016/0034-5687(84)90069-0. [DOI] [PubMed] [Google Scholar]
  29. Smith J., Wolkove N., Colacone A., Kreisman H. Coordination of eating, drinking and breathing in adults. Chest. 1989 Sep;96(3):578–582. doi: 10.1378/chest.96.3.578. [DOI] [PubMed] [Google Scholar]
  30. St John W. M., Zhou D. Differing control of neural activities during various portions of expiration in the cat. J Physiol. 1989 Nov;418:189–204. doi: 10.1113/jphysiol.1989.sp017834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. St John W. M., Zhou D. Discharge of vagal pulmonary receptors differentially alters neural activities during various stages of expiration in the cat. J Physiol. 1990 May;424:1–12. doi: 10.1113/jphysiol.1990.sp018051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sumi T. Activity in single hypoglossal fibers during cortically induced swallowing and chewing in rabbits. Pflugers Arch. 1970;314(4):329–346. doi: 10.1007/BF00592290. [DOI] [PubMed] [Google Scholar]
  33. Williams T. L., Sigvardt K. A., Kopell N., Ermentrout G. B., Remler M. P. Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator. J Neurophysiol. 1990 Sep;64(3):862–871. doi: 10.1152/jn.1990.64.3.862. [DOI] [PubMed] [Google Scholar]
  34. Wilson S. L., Thach B. T., Brouillette R. T., Abu-Osba Y. K. Coordination of breathing and swallowing in human infants. J Appl Physiol Respir Environ Exerc Physiol. 1981 Apr;50(4):851–858. doi: 10.1152/jappl.1981.50.4.851. [DOI] [PubMed] [Google Scholar]
  35. van Lunteren E., Dick T. E. Motor unit regulation of mammalian pharyngeal dilator muscle activity. J Clin Invest. 1989 Aug;84(2):577–585. doi: 10.1172/JCI114201. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES