Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992;453:547–574. doi: 10.1113/jphysiol.1992.sp019244

Estimating the strength of common input to human motoneurons from the cross-correlogram.

M A Nordstrom 1, A J Fuglevand 1, R M Enoka 1
PMCID: PMC1175573  PMID: 1464844

Abstract

1. The relationship between the motor unit discharge pattern (rate and variability) and synchronization of motor unit pairs was studied in the first dorsal interosseus muscle of human subjects. In separate trials of up to 4 min duration, subjects voluntarily controlled the mean discharge rate of an identified motor unit at one of several prescribed rates (range 7.5-17.5 Hz). 2. The effect of discharge rate on the synchronous peak in the cross-correlogram was examined in eighty motor unit pairs from six subjects. Five commonly used synchronization indices were used to quantify synchrony in the cross-correlograms constructed from different discharge-rate trials. For each synchronization index, the apparent magnitude of synchrony increased at lower motor unit discharge rates. The synchronization indices were not equally sensitive to discharge rate; increases in the different indices ranged from 72 to 494% between the highest and lowest discharge rates. 3. A model of the membrane potential trajectory underlying rhythmic motoneuron discharge was used to explain the observed increase in the magnitude of the synchronization indices at lower discharge rates. The essential feature of this model is that the probability of a common-input EPSP causing a synchronous discharge in two motoneurons is independent of discharge rate. This means that the number of synchronous action potentials in excess of chance in any trial depends on the properties of the common-input EPSPs and the duration of the trial, but is not related to motor unit discharge rates. The model also demonstrated that when the excess synchronous counts are normalized to motor unit discharge rate, or baseline counts in the histogram (as in the conventional synchronization indices), the magnitude of the index increases when the motor unit discharge rates are low. 4. The strength of common input to motoneurons could be misinterpreted if conventional synchronization indices are used because of discharge-rate effects. The model was used to derive an index of the strength of common input to motoneurons (CIS) that was independent of motor unit discharge rate. CIS is the frequency of synchronous action potentials in the motor unit pair in excess of those expected due to chance (calculated during periods of tonic discharge in both units). The mean CIS in first dorsal interosseus motor unit pairs ranged from 0.052 to 1.005 extra synchronous action potentials per second across subjects. 5. Discharge variability was correlated with each of the synchronization indices and the CIS.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
547

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L., Datta A. K., Guz A. Synchronization of motor unit firing during different respiratory and postural tasks in human sternocleidomastoid muscle. J Physiol. 1989 Jun;413:213–231. doi: 10.1113/jphysiol.1989.sp017650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashby P., Zilm D. Characteristics of postsynaptic potentials produced in single human motoneurons by homonymous group 1 volleys. Exp Brain Res. 1982;47(1):41–48. doi: 10.1007/BF00235884. [DOI] [PubMed] [Google Scholar]
  3. Bremner F. D., Baker J. R., Stephens J. A. Correlation between the discharges of motor units recorded from the same and from different finger muscles in man. J Physiol. 1991 Jan;432:355–380. doi: 10.1113/jphysiol.1991.sp018389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bremner F. D., Baker J. R., Stephens J. A. Variation in the degree of synchronization exhibited by motor units lying in different finger muscles in man. J Physiol. 1991 Jan;432:381–399. doi: 10.1113/jphysiol.1991.sp018390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calvin W. H. Generation of spike trains in CNS neurons. Brain Res. 1975 Jan 24;84(1):1–22. doi: 10.1016/0006-8993(75)90796-9. [DOI] [PubMed] [Google Scholar]
  6. Calvin W. H., Stevens C. F. Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol. 1968 Jul;31(4):574–587. doi: 10.1152/jn.1968.31.4.574. [DOI] [PubMed] [Google Scholar]
  7. Calvin W. H. Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res. 1974 Apr 5;69(2):341–346. doi: 10.1016/0006-8993(74)90012-2. [DOI] [PubMed] [Google Scholar]
  8. Cope T. C., Fetz E. E., Matsumura M. Cross-correlation assessment of synaptic strength of single Ia fibre connections with triceps surae motoneurones in cats. J Physiol. 1987 Sep;390:161–188. doi: 10.1113/jphysiol.1987.sp016692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Datta A. K., Farmer S. F., Stephens J. A. Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions. J Physiol. 1991 Jan;432:401–425. doi: 10.1113/jphysiol.1991.sp018391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Datta A. K., Stephens J. A. Synchronization of motor unit activity during voluntary contraction in man. J Physiol. 1990 Mar;422:397–419. doi: 10.1113/jphysiol.1990.sp017991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davey N. J., Ellaway P. H. Control from the brainstem of synchrony of discharge between gamma motoneurones in the cat. Exp Brain Res. 1988;72(2):249–263. doi: 10.1007/BF00250248. [DOI] [PubMed] [Google Scholar]
  12. Dorfman L. J., Howard J. E., McGill K. C. Motor unit firing rates and firing rate variability in the detection of neuromuscular disorders. Electroencephalogr Clin Neurophysiol. 1989 Sep;73(3):215–224. doi: 10.1016/0013-4694(89)90122-3. [DOI] [PubMed] [Google Scholar]
  13. Ellaway P. H. Cumulative sum technique and its application to the analysis of peristimulus time histograms. Electroencephalogr Clin Neurophysiol. 1978 Aug;45(2):302–304. doi: 10.1016/0013-4694(78)90017-2. [DOI] [PubMed] [Google Scholar]
  14. Ellaway P. H., Murthy K. S. The origins and characteristics of cross-correlated activity between gamma-motoneurones in the cat. Q J Exp Physiol. 1985 Apr;70(2):219–232. doi: 10.1113/expphysiol.1985.sp002905. [DOI] [PubMed] [Google Scholar]
  15. Enoka R. M., Robinson G. A., Kossev A. R. A stable, selective electrode for recording single motor-unit potentials in humans. Exp Neurol. 1988 Mar;99(3):761–764. doi: 10.1016/0014-4886(88)90189-6. [DOI] [PubMed] [Google Scholar]
  16. Enoka R. M., Robinson G. A., Kossev A. R. Task and fatigue effects on low-threshold motor units in human hand muscle. J Neurophysiol. 1989 Dec;62(6):1344–1359. doi: 10.1152/jn.1989.62.6.1344. [DOI] [PubMed] [Google Scholar]
  17. Fetz E. E., Gustafsson B. Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. J Physiol. 1983 Aug;341:387–410. doi: 10.1113/jphysiol.1983.sp014812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gustafsson B., McCrea D. Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones. J Physiol. 1984 Feb;347:431–451. doi: 10.1113/jphysiol.1984.sp015074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kirkwood P. A. On the use and interpretation of cross-correlations measurements in the mammalian central nervous system. J Neurosci Methods. 1979 Aug;1(2):107–132. doi: 10.1016/0165-0270(79)90009-8. [DOI] [PubMed] [Google Scholar]
  20. Kirkwood P. A., Sears T. A. The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential. J Physiol. 1978 Feb;275:103–134. doi: 10.1113/jphysiol.1978.sp012180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kirkwood P. A., Sears T. A., Tuck D. L., Westgaard R. H. Variations in the time course of the synchronization of intercostal motoneurones in the cat. J Physiol. 1982 Jun;327:105–135. doi: 10.1113/jphysiol.1982.sp014223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miles T. S., Türker K. S., Le T. H. Ia reflexes and EPSPs in human soleus motor neurones. Exp Brain Res. 1989;77(3):628–636. doi: 10.1007/BF00249616. [DOI] [PubMed] [Google Scholar]
  23. Moore G. P., Perkel D. H., Segundo J. P. Statistical analysis and functional interpretation of neuronal spike data. Annu Rev Physiol. 1966;28:493–522. doi: 10.1146/annurev.ph.28.030166.002425. [DOI] [PubMed] [Google Scholar]
  24. Nordstrom M. A., Miles T. S., Türker K. S. Synchronization of motor units in human masseter during a prolonged isometric contraction. J Physiol. 1990 Jul;426:409–421. doi: 10.1113/jphysiol.1990.sp018146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schwindt P. C., Calvin W. H. Equivalence of synaptic and injected current in determining the membrane potential trajectory during motoneuron rhythmic firing. Brain Res. 1973 Sep 14;59:389–394. doi: 10.1016/0006-8993(73)90278-3. [DOI] [PubMed] [Google Scholar]
  26. Schwindt P. C., Calvin W. H. Membrane-potential trajectories between spikes underlying motoneuron firing rates. J Neurophysiol. 1972 May;35(3):311–325. doi: 10.1152/jn.1972.35.3.311. [DOI] [PubMed] [Google Scholar]
  27. Schwindt P. C., Crill W. E. Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. J Neurophysiol. 1982 Oct;48(4):875–890. doi: 10.1152/jn.1982.48.4.875. [DOI] [PubMed] [Google Scholar]
  28. Sears T. A., Stagg D. Short-term synchronization of intercostal motoneurone activity. J Physiol. 1976 Dec;263(3):357–381. doi: 10.1113/jphysiol.1976.sp011635. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES