Abstract
1. The imidazole-containing compounds carnosine and homocarnosine, endogenous to skeletal and cardiac muscle, have been tested for effect on the contractile behaviour of chemically skinned (saponin or Triton X-100) skeletal and cardiac muscle. 2. Carnosine, at millimolar concentrations which are near physiological for many skeletal fibres, and in a concentration-dependent fashion, shifts the curve relating [Ca2+] to steady-state tension to lower [Ca2+] in both skeletal (frog but not crab) and cardiac (rat) muscle preparations. 3. Of other imidazoles endogenous to heart, homocarnosine is somewhat more effective, while N-acetyl L-histidine is much less so. 4. The maximum level of Ca(2+)-activated force is increased significantly by homocarnosine in cardiac trabeculae. 5. We propose that the cellular imidazoles related to carnosine are natural 'Ca2+ sensitizers' in striated muscle. Alterations in their levels as a result of disease or training, and between different fibre types, may contribute to differences in contractile performance of the intact tissues.
Full text
PDF![421](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/1428cc25502b/jphysiol00428-0422.png)
![422](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/e5cb3aa48c83/jphysiol00428-0423.png)
![423](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/490d455b145b/jphysiol00428-0424.png)
![424](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/2ca175d0c67d/jphysiol00428-0425.png)
![425](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/104f492eee44/jphysiol00428-0426.png)
![426](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/2889fed12bef/jphysiol00428-0427.png)
![427](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/69c0b4ced13d/jphysiol00428-0428.png)
![428](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/319e171e929d/jphysiol00428-0429.png)
![429](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/7ae259411f0b/jphysiol00428-0430.png)
![430](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/3c7bd1273d55/jphysiol00428-0431.png)
![431](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/311a77030074/jphysiol00428-0432.png)
![432](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/2af3aaf9193f/jphysiol00428-0433.png)
![433](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/d46e619cd26b/jphysiol00428-0434.png)
![434](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2388/1175612/0a2291c15cf2/jphysiol00428-0435.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altringham J. D., Johnston I. A. Effects of phosphate on the contractile properties of fast and slow muscle fibres from an Antarctic fish. J Physiol. 1985 Nov;368:491–500. doi: 10.1113/jphysiol.1985.sp015871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avena R. M., Bowen W. J. Effects of carnosine and anserine on muscle adenosine triphosphatases. J Biol Chem. 1969 Mar 25;244(6):1600–1604. [PubMed] [Google Scholar]
- Brown C. E. Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J Theor Biol. 1981 Jan 21;88(2):245–256. doi: 10.1016/0022-5193(81)90073-4. [DOI] [PubMed] [Google Scholar]
- Burton R. F. The composition of animal cells: solutes contributing to osmotic pressure and charge balance. Comp Biochem Physiol B. 1983;76(4):663–671. doi: 10.1016/0305-0491(83)90375-9. [DOI] [PubMed] [Google Scholar]
- Chapman R. A., Miller D. J. Structure-activity relations for caffeine: a comparative study of the inotropic effects of the methylxanthines, imidazoles and related compounds on the frog's heart. J Physiol. 1974 Nov;242(3):615–634. doi: 10.1113/jphysiol.1974.sp010726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crush K. G. Carnosine and related substances in animal tissues. Comp Biochem Physiol. 1970 May 1;34(1):3–30. doi: 10.1016/0010-406x(70)90049-6. [DOI] [PubMed] [Google Scholar]
- DAVEY C. L. The significance of carnosine and anserine in striated skeletal muscle. Arch Biochem Biophys. 1960 Aug;89:303–308. doi: 10.1016/0003-9861(60)90059-x. [DOI] [PubMed] [Google Scholar]
- Fabiato A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol. 1981 Nov;78(5):457–497. doi: 10.1085/jgp.78.5.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fink R. H., Stephenson D. G., Williams D. A. Potassium and ionic strength effects on the isometric force of skinned twitch muscle fibres of the rat and toad. J Physiol. 1986 Jan;370:317–337. doi: 10.1113/jphysiol.1986.sp015937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher D. E., Amend J. F., Strumeyer D. H. Anserine and carnosine in chicks (Gallus gallus) rat pups (Rattus rattus) and ducklings (Anas platyrhynchos): comparative ontogenetic observations. Comp Biochem Physiol B. 1977;56(4):367–370. doi: 10.1016/0305-0491(77)90232-2. [DOI] [PubMed] [Google Scholar]
- Gercken G., Bischoff H., Trotz M. Myokardprotektion durch eine Carnosin-gepufferte kardioplegische Lösung. Arzneimittelforschung. 1980;30(12):2140–2143. [PubMed] [Google Scholar]
- Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
- HASSELBACH W., WEBER A. Models for the study of the contraction of muscle and of cell protoplasm. Pharmacol Rev. 1955 Mar;7(1):97–117. [PubMed] [Google Scholar]
- Harrison S. M., Lamont C., Miller D. J. Hysteresis and the length dependence of calcium sensitivity in chemically skinned rat cardiac muscle. J Physiol. 1988 Jul;401:115–143. doi: 10.1113/jphysiol.1988.sp017154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
- Herzig J. W., Feile K., Rüegg J. C. Activating effects of AR-L 115 BS on the Ca2+ sensitive force, stiffness and unloaded shortening velocity (Vmax) in isolated contractile structures from mammalian heart muscle. Arzneimittelforschung. 1981;31(1A):188–191. [PubMed] [Google Scholar]
- Huddart H. Superprecipitation of actomyosin extracted from crayfish skeletal muscle: the effect of heavy metal cations, EDTA and drugs. J Exp Zool. 1971 Aug;177(4):407–415. doi: 10.1002/jez.1401770403. [DOI] [PubMed] [Google Scholar]
- Jaquet K., Heilmeyer L. M., Jr Influence of association and of positive inotropic drugs on calcium binding to cardiac troponin C. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1390–1396. doi: 10.1016/0006-291x(87)91592-0. [DOI] [PubMed] [Google Scholar]
- Johnson P., Aldstadt J. Effects of carnosine and anserine on muscle and non-muscle phosphorylases. Comp Biochem Physiol B. 1984;78(2):331–333. doi: 10.1016/0305-0491(84)90039-7. [DOI] [PubMed] [Google Scholar]
- KOREY S. Some factors influencing the contractility of a non-conducting fiber preparation. Biochim Biophys Acta. 1950 Jan;4(1-3):58–67. doi: 10.1016/0006-3002(50)90009-6. [DOI] [PubMed] [Google Scholar]
- Kentish J. C. The inhibitory effects of monovalent ions on force development in detergent-skinned ventricular muscle from guinea-pig. J Physiol. 1984 Jul;352:353–374. doi: 10.1113/jphysiol.1984.sp015296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuroda Y., Ikoma T. N-acetylhistidine isolated from frog heart. Science. 1966 May 27;152(3726):1241–1242. doi: 10.1126/science.152.3726.1241. [DOI] [PubMed] [Google Scholar]
- Lopina O. D., Boldyrev A. A. Vliianie dipeptidov karnozina i anzerina na akkumuliatsiiu Ca2+ fragmentami sarkoplazmaticheskogo retikuluma. Dokl Akad Nauk SSSR. 1975;220(5):1218–1221. [PubMed] [Google Scholar]
- Macefield G., Gandevia S. C., Burke D. Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J Physiol. 1990 Oct;429:113–129. doi: 10.1113/jphysiol.1990.sp018247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller D. J., Smith G. L. EGTA purity and the buffering of calcium ions in physiological solutions. Am J Physiol. 1984 Jan;246(1 Pt 1):C160–C166. doi: 10.1152/ajpcell.1984.246.1.C160. [DOI] [PubMed] [Google Scholar]
- Miller D. J., Smith G. L. The contractile behaviour of EGTA- and detergent-treated heart muscle. J Muscle Res Cell Motil. 1985 Oct;6(5):541–567. doi: 10.1007/BF00711914. [DOI] [PubMed] [Google Scholar]
- Miller D. J., Steele D. S. The 'calcium sensitising' effects of ORG30029 in saponin- or Triton-skinned rat cardiac muscle. Br J Pharmacol. 1990 Aug;100(4):843–849. doi: 10.1111/j.1476-5381.1990.tb14102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller D. J., Thieleczek R. Calcium release by caffeine and other methylxanthines in skinned skeletal muscle fibres [proceedings]. J Physiol. 1977 Dec;273(2):67P–68P. [PubMed] [Google Scholar]
- O'Dowd J. J., Robins D. J., Miller D. J. Detection, characterisation, and quantification of carnosine and other histidyl derivatives in cardiac and skeletal muscle. Biochim Biophys Acta. 1988 Nov 17;967(2):241–249. doi: 10.1016/0304-4165(88)90015-3. [DOI] [PubMed] [Google Scholar]
- Parker C. J., Jr, Ring E. A comparative study of the effect of carnosine on myofibrillar-ATPase activity of vertebrate and invertebrate muscles. Comp Biochem Physiol. 1970 Dec 1;37(3):413–419. doi: 10.1016/0010-406x(70)90569-4. [DOI] [PubMed] [Google Scholar]
- Rochel S., Margolis F. L. Carnosine release from olfactory bulb synaptosomes is calcium-dependent and depolarization-stimulated. J Neurochem. 1982 Jun;38(6):1505–1514. doi: 10.1111/j.1471-4159.1982.tb06626.x. [DOI] [PubMed] [Google Scholar]
- Severin S. E. Fiziologicheskaia aktivnost' priodnykh proizvodnykh imidazola. Vestn Akad Med Nauk SSSR. 1976;(9):31–37. [PubMed] [Google Scholar]
- Smith G. L., Miller D. J. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta. 1985 May 8;839(3):287–299. doi: 10.1016/0304-4165(85)90011-x. [DOI] [PubMed] [Google Scholar]
- Sobue K., Konishi H., Nakajima T. Isolation and identification of N-acetylhomocarnosine and N-acetylcarnosine from brain and muscle. J Neurochem. 1975 Jun;24(6):1261–1262. doi: 10.1111/j.1471-4159.1975.tb03908.x. [DOI] [PubMed] [Google Scholar]
- Solaro R. J., Rüegg J. C. Stimulation of Ca++ binding and ATPase activity of dog cardiac myofibrils by AR-L 115BS, a novel cardiotonic agent. Circ Res. 1982 Sep;51(3):290–294. doi: 10.1161/01.res.51.3.290. [DOI] [PubMed] [Google Scholar]
- Stepanova N. G., Grinio L. P. Issledovanie dipeptidov pri progressivnoi myshechnoi distrofii. Vopr Med Khim. 1968 Mar-Apr;14(2):210–214. [PubMed] [Google Scholar]
- Stephenson D. G., Williams D. A. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol. 1981 Aug;317:281–302. doi: 10.1113/jphysiol.1981.sp013825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wendt I. R., Stephenson D. G. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflugers Arch. 1983 Aug;398(3):210–216. doi: 10.1007/BF00657153. [DOI] [PubMed] [Google Scholar]