Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Aug;454:503–515. doi: 10.1113/jphysiol.1992.sp019276

Pacemaker current in single cells and in aggregates of cells dissociated from the embryonic chick heart.

R M Brochu 1, J R Clay 1, A Shrier 1
PMCID: PMC1175617  PMID: 1474500

Abstract

1. We have measured the time-dependent pacemaker current, I(f), in single cells, or small clusters of two or three cells dissociated from embryonic chick hearts with the whole-cell patch clamp technique, and in multicellular reaggregates of dissociated cells with the two-microelectrode voltage clamp technique. 2. We observed time-dependent current (I(f)) in the -90 to -60 mV range from aggregates of ventricular cells, as in our earlier results from this preparation, which we previously attributed to the potassium ion current mechanism, IK2. We also observed I(f) in single atrial cells and aggregates of atrial cells. 3. The range of activation of I(f) was -120 to -90 mV in atrial preparations (either single cells or aggregates). The activation range of I(f) in ventricular cells was also -120 to -90 mV which is approximately 30 mV negative to the I(f) activation range in ventricular cell aggregates. The reasons for this shift of I(f) in ventricular preparations are unknown. 4. The I(f) component clearly underlies the spontaneous pacemaker depolarization which is observed in ventricular heart cell aggregates during the first week of embryonic development. However, I(f) is not a significant factor underlying spontaneous activity in atrial preparations. The pacemaker current in these cells is a net inward background component, which is significantly reduced in amplitude with development, as is the I(f) component in the ventricle.

Full text

PDF
503

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Callewaert G., Carmeliet E., Vereecke J. Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current. J Physiol. 1984 Apr;349:643–661. doi: 10.1113/jphysiol.1984.sp015179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clay J. R., Brochu R. M., Shrier A. Phase resetting of embryonic chick atrial heart cell aggregates. Experiment and theory. Biophys J. 1990 Sep;58(3):609–621. doi: 10.1016/S0006-3495(90)82404-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clay J. R., DeFelice L. J., DeHaan R. L. Current noise parameters derived from voltage noise and impedance in embryonic heart cell aggregates. Biophys J. 1979 Nov;28(2):169–184. doi: 10.1016/S0006-3495(79)85169-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clay J. R., Hill C. E., Roitman D., Shrier A. Repolarization current in embryonic chick atrial heart cells. J Physiol. 1988 Sep;403:525–537. doi: 10.1113/jphysiol.1988.sp017262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clay J. R., Shrier A. Analysis of subthreshold pace-maker currents in chick embryonic heart cells. J Physiol. 1981 Mar;312:471–490. doi: 10.1113/jphysiol.1981.sp013639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clay J. R., Shrier A. Developmental changes in subthreshold pace-maker currents in chick embryonic heart cells. J Physiol. 1981 Mar;312:491–504. doi: 10.1113/jphysiol.1981.sp013640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen I. S., Falk R. T., Mulrine N. K. Actions of barium and rubidium on membrane currents in canine Purkinje fibres. J Physiol. 1983 May;338:589–612. doi: 10.1113/jphysiol.1983.sp014691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeHaan R. L. The potassium-sensitivity of isolated embryonic heart cells increases with development. Dev Biol. 1970 Oct;23(2):226–240. doi: 10.1016/0012-1606(70)90096-5. [DOI] [PubMed] [Google Scholar]
  9. DeHann R. L. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture. Dev Biol. 1967 Sep;16(3):216–249. doi: 10.1016/0012-1606(67)90025-5. [DOI] [PubMed] [Google Scholar]
  10. DiFrancesco D. A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol. 1981 May;314:359–376. doi: 10.1113/jphysiol.1981.sp013713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DiFrancesco D. A study of the ionic nature of the pace-maker current in calf Purkinje fibres. J Physiol. 1981 May;314:377–393. doi: 10.1113/jphysiol.1981.sp013714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DiFrancesco D., Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci. 1985 Jan 10;307(1133):353–398. doi: 10.1098/rstb.1985.0001. [DOI] [PubMed] [Google Scholar]
  13. DiFrancesco D. The cardiac hyperpolarizing-activated current, if. Origins and developments. Prog Biophys Mol Biol. 1985;46(3):163–183. doi: 10.1016/0079-6107(85)90008-2. [DOI] [PubMed] [Google Scholar]
  14. Earm Y. E., Shimoni Y., Spindler A. J. A pace-maker-like current in the sheep atrium and its modulation by catecholamines. J Physiol. 1983 Sep;342:569–590. doi: 10.1113/jphysiol.1983.sp014869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  16. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Noble D., Tsien R. W. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214. doi: 10.1113/jphysiol.1968.sp008454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sachs H. G., DeHaan R. L. Embryonic myocardial cell aggregates: volume and pulsation rate. Dev Biol. 1973 Jan;30(1):233–240. doi: 10.1016/0012-1606(73)90064-x. [DOI] [PubMed] [Google Scholar]
  19. Sakmann B., Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984 Feb;347:641–657. doi: 10.1113/jphysiol.1984.sp015088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sakmann B., Trube G. Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J Physiol. 1984 Feb;347:659–683. doi: 10.1113/jphysiol.1984.sp015089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shrier A., Clay J. R. Pacemaker currents in chick embryonic heart cells change with development. Nature. 1980 Feb 14;283(5748):670–671. doi: 10.1038/283670a0. [DOI] [PubMed] [Google Scholar]
  22. Shrier A., Clay J. R. Repolarization currents in embryonic chick atrial heart cell aggregates. Biophys J. 1986 Nov;50(5):861–874. doi: 10.1016/S0006-3495(86)83527-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES