Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Sep;455:585–599. doi: 10.1113/jphysiol.1992.sp019317

Phenylephrine-induced translocation of protein kinase C and shortening of two types of vascular cells of the ferret.

R A Khalil 1, K G Morgan 1
PMCID: PMC1175660  PMID: 1484363

Abstract

1. The relationship between phenylephrine-induced smooth muscle contraction and the subcellular distribution of protein kinase C (PKC) was investigated. 2. Cell shortening induced by phenylephrine (10(-5) M) was measured in single vascular cells freshly isolated from ferret portal vein and aorta. 3. At various time points during phenylephrine activation, single cells were fixed with paraformaldehyde and the distribution of PKC was imaged in cells labelled with the fluorescent PKC probe 12-(1,3,5,7-tetramethylBODIPY-2-propionyl)phorbol-13-acetate. 4. The PKC probe located to a perinuclear region, the cytosol and surface membrane. The amplitude and time course of the phenylephrine-induced changes in the surface membrane/cytosol fluorescence ratio were measured and compared with the amplitude and time course of phenylephrine-induced cell shortening. 5. In portal vein cells incubated in 1 mM-external Ca2+, phenylephrine caused significant shortening and time-dependent translocation of the PKC probe to the surface membrane, but cell shortening preceded PKC translocation. In Ca2+free solution both cell shortening and translocation of the probe were completely inhibited. 6. Verapamil (3 x 10(-7) M) partially, but significantly, inhibited the magnitude of cell shortening and delayed the onset and time to peak shortening. Translocation of PKC in verapamil preceded or coincided with cell shortening. 7. In aorta cells incubated in 1 mM-extracellular Ca2+, phenylephrine induced significant shortening and time-dependent translocation of the PKC probe. Cell shortening preceded PKC translocation. In Ca(2+)-free solution, shortening was only partially, but significantly, inhibited and PKC translocation preceded the fraction of the shortening response that remained. 8. These data are consistent with a role for PKC in the maintenance of the phenylephrine-induced contraction in both portal vein and aorta. The data also suggest that phenylephrine-induced contraction may involve activation of a Ca(2+)-dependent PKC isoform in ferret portal vein but a Ca(2+)-independent isoform in ferret aorta.

Full text

PDF
585

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  2. Bradley A. B., Morgan K. G. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol. 1987 Apr;385:437–448. doi: 10.1113/jphysiol.1987.sp016500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brozovich F. V., Walsh M. P., Morgan K. G. Regulation of force in skinned, single cells of ferret aortic smooth muscle. Pflugers Arch. 1990 Aug;416(6):742–749. doi: 10.1007/BF00370624. [DOI] [PubMed] [Google Scholar]
  4. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  5. Chardonnens D., Lang U., Rossier M. F., Capponi A. M., Vallotton M. B. Inhibitory and stimulatory effects of phorbol ester on vasopressin-induced cellular responses in cultured rat aortic smooth muscle cells. J Biol Chem. 1990 Jun 25;265(18):10451–10457. [PubMed] [Google Scholar]
  6. Collins E. M., Walsh M. P., Morgan K. G. Contraction of single vascular smooth muscle cells by phenylephrine at constant [Ca2+]i. Am J Physiol. 1992 Mar;262(3 Pt 2):H754–H762. doi: 10.1152/ajpheart.1992.262.3.H754. [DOI] [PubMed] [Google Scholar]
  7. Danthuluri N. R., Deth R. C. Phorbol ester-induced contraction of arterial smooth muscle and inhibition of alpha-adrenergic response. Biochem Biophys Res Commun. 1984 Dec 28;125(3):1103–1109. doi: 10.1016/0006-291x(84)91397-4. [DOI] [PubMed] [Google Scholar]
  8. DeFeo T. T., Morgan K. G. Calcium-force coupling mechanisms during vasodilator-induced relaxation of ferret aorta. J Physiol. 1989 May;412:123–133. doi: 10.1113/jphysiol.1989.sp017607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeFeo T. T., Morgan K. G. Calcium-force relationships as detected with aequorin in two different vascular smooth muscles of the ferret. J Physiol. 1985 Dec;369:269–282. doi: 10.1113/jphysiol.1985.sp015900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DeFeo T. T., Morgan K. G. Responses of enzymatically isolated mammalian vascular smooth muscle cells to pharmacological and electrical stimuli. Pflugers Arch. 1985 May;404(1):100–102. doi: 10.1007/BF00581502. [DOI] [PubMed] [Google Scholar]
  11. Farr A. G., Nakane P. K. Immunohistochemistry with enzyme labeled antibodies: a brief review. J Immunol Methods. 1981;47(2):129–144. doi: 10.1016/0022-1759(81)90114-9. [DOI] [PubMed] [Google Scholar]
  12. Gerthoffer W. T., Murphey K. A., Gunst S. J. Aequorin luminescence, myosin phosphorylation, and active stress in tracheal smooth muscle. Am J Physiol. 1989 Dec;257(6 Pt 1):C1062–C1068. doi: 10.1152/ajpcell.1989.257.6.C1062. [DOI] [PubMed] [Google Scholar]
  13. Haller H., Smallwood J. I., Rasmussen H. Protein kinase C translocation in intact vascular smooth muscle strips. Biochem J. 1990 Sep 1;270(2):375–381. doi: 10.1042/bj2700375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  15. Ho A. K., Thomas T. P., Chik C. L., Anderson W. B., Klein D. C. Protein kinase C: subcellular redistribution by increased Ca2+ influx. Evidence that Ca2+-dependent subcellular redistribution of protein kinase C is involved in potentiation of beta-adrenergic stimulation of pineal cAMP and cGMP by K+ and A23187. J Biol Chem. 1988 Jul 5;263(19):9292–9297. [PubMed] [Google Scholar]
  16. Itoh T., Ikebe M., Kargacin G. J., Hartshorne D. J., Kemp B. E., Fay F. S. Effects of modulators of myosin light-chain kinase activity in single smooth muscle cells. Nature. 1989 Mar 9;338(6211):164–167. doi: 10.1038/338164a0. [DOI] [PubMed] [Google Scholar]
  17. Jiang M. J., Morgan K. G. Agonist-specific myosin phosphorylation and intracellular calcium during isometric contractions of arterial smooth muscle. Pflugers Arch. 1989 Apr;413(6):637–643. doi: 10.1007/BF00581814. [DOI] [PubMed] [Google Scholar]
  18. Jiang M. J., Morgan K. G. Intracellular calcium levels in phorbol ester-induced contractions of vascular muscle. Am J Physiol. 1987 Dec;253(6 Pt 2):H1365–H1371. doi: 10.1152/ajpheart.1987.253.6.H1365. [DOI] [PubMed] [Google Scholar]
  19. Khalil R. A., Morgan K. G. Imaging of protein kinase C distribution and translocation in living vascular smooth muscle cells. Circ Res. 1991 Dec;69(6):1626–1631. doi: 10.1161/01.res.69.6.1626. [DOI] [PubMed] [Google Scholar]
  20. Khalil R., Lodge N., Saida K., van Breemen C. Mechanism of calcium activation in vascular smooth muscle. J Hypertens Suppl. 1987 Dec;5(4):S5–15. doi: 10.1097/00004872-198712004-00003. [DOI] [PubMed] [Google Scholar]
  21. Kiley S., Schaap D., Parker P., Hsieh L. L., Jaken S. Protein kinase C heterogeneity in GH4C1 rat pituitary cells. Characterization of a Ca2(+)-independent phorbol ester receptor. J Biol Chem. 1990 Sep 15;265(26):15704–15712. [PubMed] [Google Scholar]
  22. Kitazawa T., Kobayashi S., Horiuti K., Somlyo A. V., Somlyo A. P. Receptor-coupled, permeabilized smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem. 1989 Apr 5;264(10):5339–5342. [PubMed] [Google Scholar]
  23. Kobayashi S., Gong M. C., Somlyo A. V., Somlyo A. P. Ca2+ channel blockers distinguish between G protein-coupled pharmacomechanical Ca2+ release and Ca2+ sensitization. Am J Physiol. 1991 Feb;260(2 Pt 1):C364–C370. doi: 10.1152/ajpcell.1991.260.2.C364. [DOI] [PubMed] [Google Scholar]
  24. Kraft A. S., Anderson W. B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature. 1983 Feb 17;301(5901):621–623. doi: 10.1038/301621a0. [DOI] [PubMed] [Google Scholar]
  25. Leach K. L., Powers E. A., Ruff V. A., Jaken S., Kaufmann S. Type 3 protein kinase C localization to the nuclear envelope of phorbol ester-treated NIH 3T3 cells. J Cell Biol. 1989 Aug;109(2):685–695. doi: 10.1083/jcb.109.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morgan J. P., Morgan K. G. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol. 1984 Jun;351:155–167. doi: 10.1113/jphysiol.1984.sp015239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nishimura J., Khalil R. A., van Breemen C. Agonist-induced vascular tone. Hypertension. 1989 Jun;13(6 Pt 2):835–844. doi: 10.1161/01.hyp.13.6.835. [DOI] [PubMed] [Google Scholar]
  28. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  29. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  30. Nishizuka Y. The Albert Lasker Medical Awards. The family of protein kinase C for signal transduction. JAMA. 1989 Oct 6;262(13):1826–1833. [PubMed] [Google Scholar]
  31. O'Flaherty J. T., Jacobson D. P., Redman J. F., Rossi A. G. Translocation of protein kinase C in human polymorphonuclear neutrophils. Regulation by cytosolic Ca2(+)-independent and Ca2(+)-dependent mechanisms. J Biol Chem. 1990 Jun 5;265(16):9146–9152. [PubMed] [Google Scholar]
  32. Pawlowski J., Morgan K. G. Mechanisms of intrinsic tone in ferret vascular smooth muscle. J Physiol. 1992 Mar;448:121–132. doi: 10.1113/jphysiol.1992.sp019032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Phillips W. A., Fujiki T., Rossi M. W., Korchak H. M., Johnston R. B., Jr Influence of calcium on the subcellular distribution of protein kinase C in human neutrophils. Extraction conditions determine partitioning of histone-phosphorylating activity and immunoreactivity between cytosol and particulate fractions. J Biol Chem. 1989 May 15;264(14):8361–8365. [PubMed] [Google Scholar]
  34. Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
  35. Rasmussen H., Takuwa Y., Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB J. 1987 Sep;1(3):177–185. [PubMed] [Google Scholar]
  36. Rembold C. M., Murphy R. A. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res. 1988 Sep;63(3):593–603. doi: 10.1161/01.res.63.3.593. [DOI] [PubMed] [Google Scholar]
  37. Rembold C. M., Weaver B. A. [Ca2+], not diacylglycerol, is the primary regulator of sustained swine arterial smooth muscle contraction. Hypertension. 1990 Jun;15(6 Pt 2):692–698. doi: 10.1161/01.hyp.15.6.692. [DOI] [PubMed] [Google Scholar]
  38. Ruzycky A. L., Morgan K. G. Involvement of the protein kinase C system in calcium-force relationships in ferret aorta. Br J Pharmacol. 1989 Jun;97(2):391–400. doi: 10.1111/j.1476-5381.1989.tb11966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
  40. Shoji M., Girard P. R., Mazzei G. J., Vogler W. R., Kuo J. F. Immunocytochemical evidence for phorbol ester-induced protein kinase C translocation in HL60 cells. Biochem Biophys Res Commun. 1986 Mar 28;135(3):1144–1149. doi: 10.1016/0006-291x(86)91047-8. [DOI] [PubMed] [Google Scholar]
  41. Taylor D. A., Bowman B. F., Stull J. T. Cytoplasmic Ca2+ is a primary determinant for myosin phosphorylation in smooth muscle cells. J Biol Chem. 1989 Apr 15;264(11):6207–6213. [PubMed] [Google Scholar]
  42. Van Breemen C., Aaronson P., Loutzenhiser R. Sodium-calcium interactions in mammalian smooth muscle. Pharmacol Rev. 1978 Jun;30(2):167–208. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES