Abstract
1. Phencyclidine (PCP) block of Ca2+ channel current in enzymatically dissociated neurones from the CA1 region of the adult guinea-pig hippocampus was studied using whole-cell voltage clamp techniques. Ca2+ channel current was recorded with 3 mM-Ba2+ as the charge carrier. Na+ currents were blocked with tetrodotoxin and K+ currents were eliminated by using tetraethylammonium and N-methyl-D-glucamine as the predominant extracellular and intracellular cations, respectively. 2. Peak Ca2+ channel current evoked by depolarization from -80 to -10 mV was reduced in a use-dependent fashion by PCP. The apparent forward and reverse rate constants for block at the depolarized voltage were 10(6) s-1 M-1 and 11-14 s-1, respectively. These values were at least 60 times faster than the corresponding rates at the resting voltage. The steady-state block produced by PCP increased in a concentration-dependent fashion with an IC50 of 7 microM. Other dissociative anaesthetic drugs were substantially weaker inhibitors of the current (tiletamine > dizocilpine (MK-801) > ketamine). 3. The Ca2+ channel current recorded under identical conditions in rat dorsal root ganglion neurones was less sensitive to blockade by PCP (IC50, 90 microM). 4. PCP block of the hippocampal Ca2+ channel current occurred in a voltage-dependent fashion with the fractional block decreasing at positive membrane potentials. Analysis indicated that the PCP blocking site senses 56% of the transmembrane electric field. 5. Analysis of tail currents recorded at -80 mV demonstrated that PCP does not affect the voltage-dependent or time-dependent activation or deactivation of the Ca2+ channel current. 6. The rate and extent of inactivation of the Ca2+ channel current was maximal at -10 mV and diminished at more positive potentials. Experiments with Ba(2+)-free external solution demonstrated that inactivation of the Ca2+ channels is largely voltage-dependent and is not affected by Ba2+ influx. 7. PCP markedly increased the apparent extent of inactivation of the Ca2+ channel current during prolonged voltage steps. This increase in apparent inactivation was more pronounced at depolarized potentials. Inactivation at -10 mV proceeded in two exponential phases; PCP had little effect on the fast decay phase and caused a moderate speeding of the slow decay phase. Although block of the activated state evolved on the same time scale as inactivation, the apparent rate of inactivation was not increased in a concentration-dependent fashion by PCP indicating that the block does not occur by a conventional open channel mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF




















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguayo L. G., Albuquerque E. X. Effects of phencyclidine and its analogs on the end-plate current of the neuromuscular junction. J Pharmacol Exp Ther. 1986 Oct;239(1):15–24. [PubMed] [Google Scholar]
- Aguayo L. G., Weinstein H., Maayani S., Glick S. D., Warnick J. E., Albuquerque E. X. Discriminant effects of behaviorally active and inactive analogs of phencyclidine on membrane electrical excitability. J Pharmacol Exp Ther. 1984 Jan;228(1):80–87. [PubMed] [Google Scholar]
- Bean B. P. Classes of calcium channels in vertebrate cells. Annu Rev Physiol. 1989;51:367–384. doi: 10.1146/annurev.ph.51.030189.002055. [DOI] [PubMed] [Google Scholar]
- Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byerly L., Yazejian B. Intracellular factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnaea stagnalis. J Physiol. 1986 Jan;370:631–650. doi: 10.1113/jphysiol.1986.sp015955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbone E., Lux H. D. Single low-voltage-activated calcium channels in chick and rat sensory neurones. J Physiol. 1987 May;386:571–601. doi: 10.1113/jphysiol.1987.sp016552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Changeux J. P., Pinset C., Ribera A. B. Effects of chlorpromazine and phencyclidine on mouse C2 acetylcholine receptor kinetics. J Physiol. 1986 Sep;378:497–513. doi: 10.1113/jphysiol.1986.sp016232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman M. H., Yamaguchi S., Rogawski M. A. Protection against dendrotoxin-induced clonic seizures in mice by anticonvulsant drugs. Brain Res. 1992 Mar 13;575(1):138–142. doi: 10.1016/0006-8993(92)90433-a. [DOI] [PubMed] [Google Scholar]
- Collingridge G. L., Lester R. A. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev. 1989 Jun;41(2):143–210. [PubMed] [Google Scholar]
- Doerner D., Alger B. E. Cyclic GMP depresses hippocampal Ca2+ current through a mechanism independent of cGMP-dependent protein kinase. Neuron. 1988 Oct;1(8):693–699. doi: 10.1016/0896-6273(88)90168-7. [DOI] [PubMed] [Google Scholar]
- Doerner D., Pitler T. A., Alger B. E. Protein kinase C activators block specific calcium and potassium current components in isolated hippocampal neurons. J Neurosci. 1988 Nov;8(11):4069–4078. doi: 10.1523/JNEUROSCI.08-11-04069.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dupont J. L., Bossu J. L., Feltz A. Effect of internal calcium concentration on calcium currents in rat sensory neurones. Pflugers Arch. 1986 Apr;406(4):433–435. doi: 10.1007/BF00590950. [DOI] [PubMed] [Google Scholar]
- Eckert R., Chad J. E. Inactivation of Ca channels. Prog Biophys Mol Biol. 1984;44(3):215–267. doi: 10.1016/0079-6107(84)90009-9. [DOI] [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. E., Gray R., Johnston D. Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons. J Neurophysiol. 1990 Jul;64(1):91–104. doi: 10.1152/jn.1990.64.1.91. [DOI] [PubMed] [Google Scholar]
- Forscher P., Oxford G. S. Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol. 1985 May;85(5):743–763. doi: 10.1085/jgp.85.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox A. P., Nowycky M. C., Tsien R. W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987 Dec;394:149–172. doi: 10.1113/jphysiol.1987.sp016864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox A. P., Nowycky M. C., Tsien R. W. Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol. 1987 Dec;394:173–200. doi: 10.1113/jphysiol.1987.sp016865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadley R. W., Hume J. R. Actions of phencyclidine on the action potential and membrane currents of single guinea-pig myocytes. J Pharmacol Exp Ther. 1986 Apr;237(1):131–136. [PubMed] [Google Scholar]
- Hille B., Woodhull A. M., Shapiro B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301–318. doi: 10.1098/rstb.1975.0011. [DOI] [PubMed] [Google Scholar]
- Hiramatsu M., Cho A. K., Nabeshima T. Comparison of the behavioral and biochemical effects of the NMDA receptor antagonists, MK-801 and phencyclidine. Eur J Pharmacol. 1989 Aug 3;166(3):359–366. doi: 10.1016/0014-2999(89)90346-4. [DOI] [PubMed] [Google Scholar]
- Jones S. W., Marks T. N. Calcium currents in bullfrog sympathetic neurons. II. Inactivation. J Gen Physiol. 1989 Jul;94(1):169–182. doi: 10.1085/jgp.94.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay A. R. Inactivation kinetics of calcium current of acutely dissociated CA1 pyramidal cells of the mature guinea-pig hippocampus. J Physiol. 1991 Jun;437:27–48. doi: 10.1113/jphysiol.1991.sp018581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay A. R., Wong R. K. Calcium current activation kinetics in isolated pyramidal neurones of the Ca1 region of the mature guinea-pig hippocampus. J Physiol. 1987 Nov;392:603–616. doi: 10.1113/jphysiol.1987.sp016799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay A. R., Wong R. K. Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods. 1986 May;16(3):227–238. doi: 10.1016/0165-0270(86)90040-3. [DOI] [PubMed] [Google Scholar]
- Lacey M. G., Henderson G. Actions of phencyclidine on rat locus coeruleus neurones in vitro. Neuroscience. 1986 Feb;17(2):485–494. doi: 10.1016/0306-4522(86)90261-7. [DOI] [PubMed] [Google Scholar]
- Lehmann-Masten V. D., Geyer M. A. Spatial and temporal patterning distinguishes the locomotor activating effects of dizocilpine and phencyclidine in rats. Neuropharmacology. 1991 Jun;30(6):629–636. doi: 10.1016/0028-3908(91)90083-n. [DOI] [PubMed] [Google Scholar]
- MacDonald J. F., Bartlett M. C., Mody I., Pahapill P., Reynolds J. N., Salter M. W., Schneiderman J. H., Pennefather P. S. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J Physiol. 1991 Jan;432:483–508. doi: 10.1113/jphysiol.1991.sp018396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald J. F., Nowak L. M. Mechanisms of blockade of excitatory amino acid receptor channels. Trends Pharmacol Sci. 1990 Apr;11(4):167–172. doi: 10.1016/0165-6147(90)90070-O. [DOI] [PubMed] [Google Scholar]
- Papke R. L., Oswald R. E. Mechanisms of noncompetitive inhibition of acetylcholine-induced single-channel currents. J Gen Physiol. 1989 May;93(5):785–811. doi: 10.1085/jgp.93.5.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plummer M. R., Logothetis D. E., Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron. 1989 May;2(5):1453–1463. doi: 10.1016/0896-6273(89)90191-8. [DOI] [PubMed] [Google Scholar]
- Siegel R. K. Phencyclidine and ketamine intoxication: a study of four populations of recreational users. NIDA Res Monogr. 1978 Aug;(21):119–147. [PubMed] [Google Scholar]
- Slesinger P. A., Lansman J. B. Inactivation of calcium currents in granule cells cultured from mouse cerebellum. J Physiol. 1991 Apr;435:101–121. doi: 10.1113/jphysiol.1991.sp018500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starmer C. F., Grant A. O. Phasic ion channel blockade. A kinetic model and parameter estimation procedure. Mol Pharmacol. 1985 Oct;28(4):348–356. [PubMed] [Google Scholar]
- Starmer C. F., Packer D. L., Grant A. O. Ligand binding to transiently accessible sites: mechanisms for varying apparent binding rates. J Theor Biol. 1987 Feb 7;124(3):335–341. doi: 10.1016/s0022-5193(87)80120-0. [DOI] [PubMed] [Google Scholar]
- Wada A., Arita M., Yanagihara N., Izumi F. Binding of [3H]phencyclidine to adrenal medullary cells: inhibition of 22Na influx, 45Ca influx, 86Rb efflux and catecholamine secretion caused by carbachol and veratridine. Neuroscience. 1988 May;25(2):687–696. doi: 10.1016/0306-4522(88)90269-2. [DOI] [PubMed] [Google Scholar]
- Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi S., Rogawski M. A. Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res. 1992 Mar;11(1):9–16. doi: 10.1016/0920-1211(92)90016-m. [DOI] [PubMed] [Google Scholar]
- ffrench-Mullen J. M., Rogawski M. A. Interaction of phencyclidine with voltage-dependent potassium channels in cultured rat hippocampal neurons: comparison with block of the NMDA receptor-ionophore complex. J Neurosci. 1989 Nov;9(11):4051–4061. doi: 10.1523/JNEUROSCI.09-11-04051.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
