Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Nov;457:115–129. doi: 10.1113/jphysiol.1992.sp019367

The actions of baclofen on neurones and synaptic transmission in the nucleus tractus solitarii of the rat in vitro.

P A Brooks 1, S R Glaum 1, R J Miller 1, K M Spyer 1
PMCID: PMC1175720  PMID: 1363669

Abstract

1. Intracellular and whole-cell patch recordings were made from sixty-seven neurones located in the nucleus tractus solitarii (NTS) in transverse slices of rat brainstem. 2. Baclofen at concentrations of 2-20 microM caused hyperpolarization from normal resting membrane potentials (Vm). This response was associated with a decrease in input resistance (Rm) tested by current pulses in discontinuous current clamp mode when membrane potential was restored to control level by current injection. In single electrode discontinuous voltage clamp mode, baclofen at these concentrations caused a small (< 50 pA) outward current associated with increased membrane conductance measured by voltage steps from holding potentials (Vh) of -50 or -60 mV. Current-voltage relations at these Vhs and the results of varying Vh between -50 and -110 mV during responses to baclofen gave a reversal potential of -73 mV. The amplitudes of baclofen responses were related to K+ concentration tested by comparing responses in media containing 1-24 mM extracellular K+, indicating that postsynaptically baclofen acts via a K+ conductance. 3. These effects were still apparent in the presence of tetrodotoxin (which did not abolish all spontaneous synaptic activity) and also in medium containing a combination of Co2+, the excitatory amino acid antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX) and the GABAA antagonist bicuculline which blocked synaptic activity. 4. The amplitude and frequency of spontaneous postsynaptic potentials (spPSPs) and spontaneous postsynaptic currents (spPSCs) were reduced by baclofen at concentrations (1 microM or less) which had no effect on membrane potential or holding current in current or voltage clamp recordings respectively. 5. The amplitude of evoked excitatory (evEPSPs/evEPSCs) and inhibitory (evIPSPs/evIPSCs) synaptic events elicited by electrical stimulation in the vicinity of the tractus solitarius (TS) was reduced by low concentrations of baclofen (250 nM-1 microM) which did not produce discernible postsynaptic responses. 6. In order to examine the effects of baclofen on excitatory synaptic events without contamination with inhibitory events, stimulation of the TS was carried out in the presence of bicuculline. Conversely to investigate actions on purely inhibitory synaptic responses experiments were carried out with CNQX in the bathing solution. Inhibitory synaptic responses could still be evoked, presumably by stimulation of interneurones in the vicinity of the TS. IPSPs/IPSCs were more sensitive to baclofen than EPSPs/EPSCs. 7. The effects of baclofen on membrane potential or holding current and PSP/PSCs were antagonized by 2-hydroxysaclofen (400 microM) confirming that baclofen was acting at gamma-aminobutyric acid (GABA)B receptors.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
115

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrade R., Malenka R. C., Nicoll R. A. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science. 1986 Dec 5;234(4781):1261–1265. doi: 10.1126/science.2430334. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. L., Bingham S., Wood K. L. Modulation of the vagal drive to the intramural cholinergic and non-cholinergic neurones in the ferret stomach by baclofen. J Physiol. 1987 Jul;388:25–39. doi: 10.1113/jphysiol.1987.sp016599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ascher P., Nowak L. The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. J Physiol. 1988 May;399:247–266. doi: 10.1113/jphysiol.1988.sp017078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ault B., Nadler J. V. Baclofen selectively inhibits transmission at synapses made by axons of CA3 pyramidal cells in the hippocampal slice. J Pharmacol Exp Ther. 1982 Nov;223(2):291–297. [PubMed] [Google Scholar]
  5. Blaxter T. J., Carlen P. L. Pre- and postsynaptic effects of baclofen in the rat hippocampal slice. Brain Res. 1985 Aug 19;341(1):195–199. doi: 10.1016/0006-8993(85)91489-1. [DOI] [PubMed] [Google Scholar]
  6. Bousquet P., Feldman J., Bloch R., Schwartz J. Evidence for a neuromodulatory role of GABA at the first synapse of the baroreceptor reflex pathway. Effects of GABA derivatives injected into the NTS. Naunyn Schmiedebergs Arch Pharmacol. 1982 May;319(2):168–171. doi: 10.1007/BF00503932. [DOI] [PubMed] [Google Scholar]
  7. Bowery N. G., Hudson A. L., Price G. W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience. 1987 Feb;20(2):365–383. doi: 10.1016/0306-4522(87)90098-4. [DOI] [PubMed] [Google Scholar]
  8. Colmers W. F., Pittman Q. J. Presynaptic inhibition by neuropeptide Y and baclofen in hippocampus: insensitivity to pertussis toxin treatment. Brain Res. 1989 Sep 25;498(1):99–104. doi: 10.1016/0006-8993(89)90403-4. [DOI] [PubMed] [Google Scholar]
  9. Colmers W. F., Williams J. T. Pertussis toxin pretreatment discriminates between pre- and postsynaptic actions of baclofen in rat dorsal raphe nucleus in vitro. Neurosci Lett. 1988 Nov 11;93(2-3):300–306. doi: 10.1016/0304-3940(88)90099-7. [DOI] [PubMed] [Google Scholar]
  10. Davies J. Selective depression of synaptic excitation in cat spinal neurones by baclofen: an iontophoretic study. Br J Pharmacol. 1981 Feb;72(2):373–384. doi: 10.1111/j.1476-5381.1981.tb09137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deisz R. A., Prince D. A. Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feed-back on GABA release. J Physiol. 1989 May;412:513–541. doi: 10.1113/jphysiol.1989.sp017629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dolphin A. C., Scott R. H. Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol. 1987 May;386:1–17. doi: 10.1113/jphysiol.1987.sp016518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Drewe J. A., Miles R., Kunze D. L. Excitatory amino acid receptors of guinea pig medial nucleus tractus solitarius neurons. Am J Physiol. 1990 Nov;259(5 Pt 2):H1389–H1395. doi: 10.1152/ajpheart.1990.259.5.H1389. [DOI] [PubMed] [Google Scholar]
  14. Dunlap K., Fischbach G. D. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol. 1981 Aug;317:519–535. doi: 10.1113/jphysiol.1981.sp013841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dutar P., Nicoll R. A. Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron. 1988 Sep;1(7):585–591. doi: 10.1016/0896-6273(88)90108-0. [DOI] [PubMed] [Google Scholar]
  16. Fargeas M. J., Fioramonti J., Bueno L. Central and peripheral action of GABAA and GABAB agonists on small intestine motility in rats. Eur J Pharmacol. 1988 May 20;150(1-2):163–169. doi: 10.1016/0014-2999(88)90763-7. [DOI] [PubMed] [Google Scholar]
  17. Florentino A., Varga K., Kunos G. Mechanism of the cardiovascular effects of GABAB receptor activation in the nucleus tractus solitarii of the rat. Brain Res. 1990 Dec 10;535(2):264–270. doi: 10.1016/0006-8993(90)91609-k. [DOI] [PubMed] [Google Scholar]
  18. Goto Y., Tache Y., Debas H., Novin D. Gastric acid and vagus nerve response to GABA agonist baclofen. Life Sci. 1985 Jul 1;36(26):2471–2475. doi: 10.1016/0024-3205(85)90143-2. [DOI] [PubMed] [Google Scholar]
  19. Gähwiler B. H., Brown D. A. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1558–1562. doi: 10.1073/pnas.82.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harrison N. L. On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J Physiol. 1990 Mar;422:433–446. doi: 10.1113/jphysiol.1990.sp017993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Howe J. R., Sutor B., Zieglgänsberger W. Baclofen reduces post-synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. J Physiol. 1987 Mar;384:539–569. doi: 10.1113/jphysiol.1987.sp016469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Inoue M., Matsuo T., Ogata N. Characterization of pre- and postsynaptic actions of (-)-baclofen in the guinea-pig hippocampus in vitro. Br J Pharmacol. 1985 Apr;84(4):843–851. doi: 10.1111/j.1476-5381.1985.tb17378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lalley P. M. Inhibition of depressor cardiovascular reflexes by a derivative of gamma-aminobutyric acid (GABA) and by general anesthetics with suspected GABA-mimetic effects. J Pharmacol Exp Ther. 1980 Nov;215(2):418–425. [PubMed] [Google Scholar]
  24. Lanthorn T. H., Cotman C. W. Baclofen selectively inhibits excitatory synaptic transmission in the hippocampus. Brain Res. 1981 Nov 23;225(1):171–178. doi: 10.1016/0006-8993(81)90326-7. [DOI] [PubMed] [Google Scholar]
  25. Mayer M. L., Westbrook G. L. The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J Physiol. 1985 Apr;361:65–90. doi: 10.1113/jphysiol.1985.sp015633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McAllen R. M., Spyer K. M. The baroreceptor input to cardiac vagal motoneurones. J Physiol. 1978 Sep;282:365–374. doi: 10.1113/jphysiol.1978.sp012469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mifflin S. W., Spyer K. M., Withington-Wray D. J. Baroreceptor inputs to the nucleus tractus solitarius in the cat: modulation by the hypothalamus. J Physiol. 1988 May;399:369–387. doi: 10.1113/jphysiol.1988.sp017086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mifflin S. W., Spyer K. M., Withington-Wray D. J. Baroreceptor inputs to the nucleus tractus solitarius in the cat: postsynaptic actions and the influence of respiration. J Physiol. 1988 May;399:349–367. doi: 10.1113/jphysiol.1988.sp017085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller B. D., Felder R. B. Excitatory amino acid receptors intrinsic to synaptic transmission in nucleus tractus solitarii. Brain Res. 1988 Jul 26;456(2):333–343. doi: 10.1016/0006-8993(88)90236-3. [DOI] [PubMed] [Google Scholar]
  30. Misgeld U., Müller W., Brunner H. Effects of (-)baclofen on inhibitory neurons in the guinea pig hippocampal slice. Pflugers Arch. 1989 Jun;414(2):139–144. doi: 10.1007/BF00580955. [DOI] [PubMed] [Google Scholar]
  31. Newberry N. R., Nicoll R. A. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol. 1985 Mar;360:161–185. doi: 10.1113/jphysiol.1985.sp015610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peet M. J., McLennan H. Pre-and postsynaptic actions of baclofen: blockade of the late synaptically-evoked hyperpolarization of CA1 hippocampal neurones. Exp Brain Res. 1986;61(3):567–574. doi: 10.1007/BF00237582. [DOI] [PubMed] [Google Scholar]
  33. Persson B. A hypertensive response to baclofen in the nucleus tractus solitarii in rats. J Pharm Pharmacol. 1981 Apr;33(4):226–231. doi: 10.1111/j.2042-7158.1981.tb13763.x. [DOI] [PubMed] [Google Scholar]
  34. Schmid K., Böhmer G., Gebauer K. GABAB receptor mediated effects on central respiratory system and their antagonism by phaclofen. Neurosci Lett. 1989 May 8;99(3):305–310. doi: 10.1016/0304-3940(89)90464-3. [DOI] [PubMed] [Google Scholar]
  35. Scholz K. P., Miller R. J. GABAB receptor-mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones. J Physiol. 1991 Dec;444:669–686. doi: 10.1113/jphysiol.1991.sp018900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Soltesz I., Haby M., Leresche N., Crunelli V. The GABAB antagonist phaclofen inhibits the late K+-dependent IPSP in cat and rat thalamic and hippocampal neurones. Brain Res. 1988 May 17;448(2):351–354. doi: 10.1016/0006-8993(88)91275-9. [DOI] [PubMed] [Google Scholar]
  37. Spyer K. M. Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol. 1981;88:24–124. [PubMed] [Google Scholar]
  38. Sun M. K., Guyenet P. G. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Physiol. 1985 Dec;249(6 Pt 2):R672–R680. doi: 10.1152/ajpregu.1985.249.6.R672. [DOI] [PubMed] [Google Scholar]
  39. Sved A. F., Sved J. C. Endogenous GABA acts on GABAB receptors in nucleus tractus solitarius to increase blood pressure. Brain Res. 1990 Sep 3;526(2):235–240. doi: 10.1016/0006-8993(90)91227-8. [DOI] [PubMed] [Google Scholar]
  40. Sved J. C., Sved A. F. Cardiovascular responses elicited by gamma-aminobutyric acid in the nucleus tractus solitarius: evidence for action at the GABAB receptor. Neuropharmacology. 1989 May;28(5):515–520. doi: 10.1016/0028-3908(89)90088-9. [DOI] [PubMed] [Google Scholar]
  41. Thalmann R. H. Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: effect of pertussis toxin and GTP gamma S on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J Neurosci. 1988 Dec;8(12):4589–4602. doi: 10.1523/JNEUROSCI.08-12-04589.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES