Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Nov;457:539–557. doi: 10.1113/jphysiol.1992.sp019393

Dynamics of the ventilatory response in man to step changes of end-tidal carbon dioxide and of hypoxia during exercise.

D J MacFarlane 1, D J Cunningham 1
PMCID: PMC1175746  PMID: 1297845

Abstract

1. Four human subjects exercised in hypoxia (end-tidal partial pressure of O2 (P(ET),O2) ca 55 Torr; heart rate ca 100-130 beats min-1), and the contribution to the respiratory drive of the peripheral and central chemoreflex pathways have been separated on the basis of the latencies and the time courses of the responses to sudden changes of stimulus. 2. The subjects were exposed to repeated end-tidal step changes in PCO2 of ca 3-3.5 Torr (at nearly constant P(ET),O2) and PO2 (between ca 55 and 230 Torr) at three regions along the expiratory ventilation VE-P(ET),CO2 response line (hypocapnia, eucapnia, hypercapnia). The dynamics of the ventilatory responses were calculated using a two-compartment non-linear least-squares optimization method. 3. The component of the response attributable to the peripheral chemoreflex loop may in some subjects contribute up to 75% of the ventilatory drive during mild hypocapnic hypoxic exercise and ca 72% of the total gain following steps of P(ET),CO2 during hypoxic exercise. These data support the notion that the effectiveness of the peripheral chemoreceptor pathway is enhanced in moderate exercise. 4. During hypoxic exercise, the time delays and time constants attributed to the peripheral chemoreflex pathways (ca 3.5 and 9 s respectively) and to the central chemoreflex pathways (ca 9.5 and 47 s respectively) are some of the shortest reported. 5. The dynamics of the peripheral and central chemoreflex pathways appeared to be largely independent of each other. 6. There was a notable absence of systematic change of inspiratory and expiratory durations during the step-induced transients.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASMUSSEN E., NIELSEN M. Ventilatory response to CO2 during work at normal and at low oxygen tensions. Acta Physiol Scand. 1957 Apr 10;39(1):27–35. doi: 10.1111/j.1748-1716.1957.tb01406.x. [DOI] [PubMed] [Google Scholar]
  2. Bartoli A., Cross B. A., Guz A., Jain S. K., Noble M. I., Trenchard D. W. The effect of carbon dioxide in the airways and alveoli on ventilation; a vagal reflex studied in the dog. J Physiol. 1974 Jul;240(1):91–109. doi: 10.1113/jphysiol.1974.sp010601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellville J. W., Whipp B. J., Kaufman R. D., Swanson G. D., Aqleh K. A., Wiberg D. M. Central and peripheral chemoreflex loop gain in normal and carotid body-resected subjects. J Appl Physiol Respir Environ Exerc Physiol. 1979 Apr;46(4):843–853. doi: 10.1152/jappl.1979.46.4.843. [DOI] [PubMed] [Google Scholar]
  4. Bhattacharyya N. K., Cunningham D. J., Goode R. C., Howson M. G., Lloyd B. B. Hypoxia, ventilation, PCO2 and exercise. Respir Physiol. 1970 Jun;9(3):329–347. doi: 10.1016/0034-5687(70)90090-3. [DOI] [PubMed] [Google Scholar]
  5. Cherniack N. S., Edelman N. H., Lahiri S. Hypoxia and hypercapnia as respiratory stimulants and depressants. Respir Physiol. 1970;11(1):113–126. doi: 10.1016/0034-5687(70)90107-6. [DOI] [PubMed] [Google Scholar]
  6. Cummin A. R., Alison J., Jacobi M. S., Iyawe V. I., Saunders K. B. Ventilatory sensitivity to inhaled carbon dioxide around the control point during exercise. Clin Sci (Lond) 1986 Jul;71(1):17–22. doi: 10.1042/cs0710017. [DOI] [PubMed] [Google Scholar]
  7. Cunningham D. J. Studies on arterial chemoreceptors in man. J Physiol. 1987 Mar;384:1–26. doi: 10.1113/jphysiol.1987.sp016440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeGoede J., Berkenbosch A., Ward D. S., Bellville J. W., Olievier C. N. Comparison of chemoreflex gains obtained with two different methods in cats. J Appl Physiol (1985) 1985 Jul;59(1):170–179. doi: 10.1152/jappl.1985.59.1.170. [DOI] [PubMed] [Google Scholar]
  9. Edelman N. H., Epstein P. E., Lahiri S., Cherniack N. S. Ventilatory responses to transient hypoxia and hypercapnia in man. Respir Physiol. 1973 Apr;17(3):302–314. doi: 10.1016/0034-5687(73)90005-4. [DOI] [PubMed] [Google Scholar]
  10. Eldridge F. L. Central neural respiratory stimulatory effect of active respiration. J Appl Physiol. 1974 Nov;37(5):723–735. doi: 10.1152/jappl.1974.37.5.723. [DOI] [PubMed] [Google Scholar]
  11. Gardner W. N. The pattern of breathing following step changes of alveolar partial pressures of carbon dioxide and oxygen in man. J Physiol. 1980 Mar;300:55–73. doi: 10.1113/jphysiol.1980.sp013151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jain S. K., Subramanian S., Julka D. B., Guz A. Search for evidence of lung chemoreflexes in man: study of respiratory and circulatory effects of phenyldiguanide and lobeline. Clin Sci. 1972 Feb;42(2):163–177. doi: 10.1042/cs0420163. [DOI] [PubMed] [Google Scholar]
  13. Jennett S., McKay F. C., Moss V. A. The human ventilatory response to stimulation by transient hypoxia. J Physiol. 1981 Jun;315:339–351. doi: 10.1113/jphysiol.1981.sp013751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Katz-Salamon M. Ability to judge lung volumes at different CO2-drives for ventilation and the possible influence of such a judgment on the ventilatory CO2-responsiveness. Acta Physiol Scand. 1984 Feb;120(2):177–183. doi: 10.1111/j.1748-1716.1984.tb00123.x. [DOI] [PubMed] [Google Scholar]
  15. Kay J. D., Petersen E. S., Vejby-Christensen H. Mean and breath-by-breath pattern of breathing in man during steady-state exercise. J Physiol. 1975 Oct;251(3):657–669. doi: 10.1113/jphysiol.1975.sp011114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LLOYD B. B., JUKES M. G., CUNNINGHAM D. J. The relation between alveolar oxygen pressure and the respiratory response to carbon dioxide in man. Q J Exp Physiol Cogn Med Sci. 1958 Apr;43(2):214–227. doi: 10.1113/expphysiol.1958.sp001319. [DOI] [PubMed] [Google Scholar]
  17. Lefrançois R., Gautier H., Pasquis P., Cevaer A. M., Hellot M. F., Leroy J. Chemoreflex ventilatory response to CO 2 in man at low and high altitudes. Respir Physiol. 1972 Apr;14(3):296–306. doi: 10.1016/0034-5687(72)90036-9. [DOI] [PubMed] [Google Scholar]
  18. Masson R. G., Lahiri S. Chemical control of ventilation during hypoxic exercise. Respir Physiol. 1974 Dec;22(3):241–262. doi: 10.1016/0034-5687(74)90075-9. [DOI] [PubMed] [Google Scholar]
  19. Milhorn H. T., Jr, Reynolds W. J. 'Exponential peeling' of ventilatory transients following inhalation of 5, 6 and 7% CO2. Respir Physiol. 1976 Oct;28(1):75–87. doi: 10.1016/0034-5687(76)90086-4. [DOI] [PubMed] [Google Scholar]
  20. Miller J. P., Cunningham D. J., Lloyd B. B., Young J. M. The transient respiratory effects in man of sudden changes in alveolar CO2 in hypoxia and in high oxygen. Respir Physiol. 1974 Feb;20(1):17–31. doi: 10.1016/0034-5687(74)90015-2. [DOI] [PubMed] [Google Scholar]
  21. NIELSEN M., SMITH H. Studies on the regulation of respiration in acute hypoxia; with a appendix on respiratory control during prolonged hypoxia. Acta Physiol Scand. 1952 Feb 12;24(4):293–313. doi: 10.1111/j.1748-1716.1952.tb00847.x. [DOI] [PubMed] [Google Scholar]
  22. Robbins P. A. Evidence for interaction between the contributions to ventilation from the central and peripheral chemoreceptors in man. J Physiol. 1988 Jul;401:503–518. doi: 10.1113/jphysiol.1988.sp017175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robbins P. A., Swanson G. D., Howson M. G. A prediction-correction scheme for forcing alveolar gases along certain time courses. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):1353–1357. doi: 10.1152/jappl.1982.52.5.1353. [DOI] [PubMed] [Google Scholar]
  24. Swanson G. D., Bellville J. W. Step changes in end-tidal CO2: methods and implications. J Appl Physiol. 1975 Sep;39(3):377–385. doi: 10.1152/jappl.1975.39.3.377. [DOI] [PubMed] [Google Scholar]
  25. Ward S. A., Cunningham D. J. The relation between hypoxia and CO2-induced reflex alternation of breathing in man. Respir Physiol. 1977 May;29(3):363–378. doi: 10.1016/0034-5687(77)90010-x. [DOI] [PubMed] [Google Scholar]
  26. Ward S. A., Drysdale D. B., Cunningham D. J., Petersen E. S. Inspiratory-expiratory responses to alternate-breath oscillation of PACO2 and PAO2. Respir Physiol. 1979 Apr;36(3):311–325. doi: 10.1016/0034-5687(79)90044-6. [DOI] [PubMed] [Google Scholar]
  27. Weltman A., Snead D., Seip R., Schurrer R., Weltman J., Rutt R., Rogol A. Percentages of maximal heart rate, heart rate reserve and VO2max for determining endurance training intensity in male runners. Int J Sports Med. 1990 Jun;11(3):218–222. doi: 10.1055/s-2007-1024795. [DOI] [PubMed] [Google Scholar]
  28. YAMAMOTO W. S. Mathematical analysis of the time course of alveolar carbon dioxide. J Appl Physiol. 1960 Mar;15:215–219. doi: 10.1152/jappl.1960.15.2.215. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES