Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2025 Jan;39(1):5–12. [Article in Chinese] doi: 10.7507/1002-1892.202408061

无影像机器人辅助人工全膝关节置换术在膝骨关节炎合并关节外畸形治疗中的早期临床疗效

Early effectiveness of navigation-free robot-assisted total knee arthroplasty in treating knee osteoarthritis with extra-articular deformities

Chen MENG 1,2, Yongqing XU 1, Rongmao SHI 1, Luqiao PU 1, Jian’an JI 3, Xingyou YAO 4, Xizong ZHOU 5, Chuan LI 1,*
PMCID: PMC11757961  PMID: 39848709

Abstract

目的

评估无影像机器人辅助人工全膝关节置换术(total knee arthroplasty,TKA)与传统TKA治疗膝骨关节炎合并关节外畸形的早期临床疗效。

方法

回顾分析2019年6月—2024年1月收治且符合选择标准的30例膝骨关节炎合并关节外畸形患者临床资料。其中15例行CORI无影像机器人导航辅助关节内截骨TKA(机器人组),15例行传统关节内截骨TKA(传统组)。两组患者年龄、性别、身体质量指数、患膝侧别、关节外畸形角度、畸形位置、畸形类型及术前膝关节活动度、美国膝关节协会评分(KSS)膝关节评分及KSS功能评分、下肢力线偏移等基线资料比较差异均无统计学意义(P>0.05)。记录并比较两组患者手术时间、术中失血量及并发症发生情况;术前及术后6个月,记录患者膝关节活动度、下肢力线偏移,采用KSS膝关节评分和功能评分评价患者术后膝关节功能。

结果

两组手术时间比较差异无统计学意义(P>0.05);机器人组术中失血量少于传统组,差异有统计学意义(P<0.05)。两组患者均获随访,随访时间6~12个月,平均8.7个月。患者切口均愈合良好,未发生血栓形成、感染等术后并发症。术后6个月X线片检查示,两组患者假体位置良好,均未出现假体松动或脱位等表现。两组膝关节活动度、下肢力线偏移及KSS膝关节和功能评分均较术前显著改善,差异有统计学意义(P<0.05);机器人组下肢力线偏移和KSS功能评分手术前后变化值均优于传统组,差异有统计学意义(P<0.05),其余指标手术前后变化值两组间比较差异均无统计学意义(P>0.05)。

结论

与传统TKA相比,无影像机器人辅助TKA治疗伴有关节外畸形的膝骨关节炎患者,术中失血量更少,下肢力线重建更精准,早期临床疗效更佳,但远期临床疗效有待进一步研究。

Keywords: 无影像机器人, 人工全膝关节置换术, 膝骨关节炎, 关节外畸形, 下肢力线


关节外畸形是指由于既往骨折畸形愈合或骨骼发育异常,导致股骨或胫骨畸形,进而引起下肢力线偏移和膝关节应力分布失衡,最终导致膝骨关节炎的发生、发展[1]。超过5° 的内翻或外翻力线偏移会导致骨关节炎进展风险提高5倍,力线偏移严重程度与骨关节炎关节间隙丢失显著相关[2]。据报道,58%膝骨关节炎会合并关节外畸形[3]

当膝骨关节炎合并关节外畸形时,恢复下肢力线是手术重点。但手术方法存在争议,一种方法是先行截骨术矫正关节外畸形,然后同期或二期行人工全膝关节置换术(total knee arthroplasty,TKA);另一种方法是通过TKA中关节内代偿性截骨和软组织平衡来恢复下肢力线[4]。有些学者主张行截骨术联合TKA治疗关节外畸形,可以实现良好的机械对线并减少TKA中的软组织松解[5]。然而,截骨术会导致更大手术创伤,尤其是截骨术后二期行TKA,对血液动力学储存较低的高龄患者极为不利[6],术后可能会出现骨不连、截骨感染等并发症;此外,康复时间和功能恢复时间延长可能导致膝关节功能评分不理想[7]。关节内截骨矫正在一次手术既恢复了下肢力线,又完成了TKA,无需考虑关节外截骨的固定问题。然而,该术式可能导致侧副韧带损伤及屈伸间隙不等风险,畸形的髓腔还会使传统器械定位困难,从而增加手术难度[8]

近年来,人工智能辅助导航在膝关节外科的应用逐渐增多,机器人辅助手术通过智能规划和精准截骨,显著降低了关节内代偿性截骨TKA治疗膝骨关节炎伴关节外畸形的难度[9]。目前,国内大多数机器人系统依赖术前CT影像进行导航,对无影像机器人导航系统的研究相对较少,特别是在治疗关节外畸形中的应用更鲜有报道。鉴于此,本研究对CORI无影像机器人(Smith&Nephew公司,英国)导航辅助TKA与传统TKA治疗膝骨关节炎伴关节外畸形的临床疗效进行比较。报告如下。

1. 临床资料

1.1. 一般资料

患者纳入标准:① 合并关节外畸形[810-11]的膝骨关节炎,关节外畸形评估标准见图1;② 影像学表现符合重度膝骨关节炎指征,Kellgren-Lawrence 骨关节炎分级为Ⅲ、Ⅳ级;③ 患者主诉膝关节剧烈疼痛伴严重活动受限,且保守治疗无效;④ 首次行TKA;⑤ 术后随访依从性好。

图 1.

Evaluation of extra-articular deformities on coronal and sagittal X-ray films of bilateral lower extremities

双下肢全长 X 线片冠状面和矢状面评估关节外畸形

mLDFA:股骨远端外侧角 MPTA:胫骨近端内侧角 aPDFA:股骨远端后角 aPPTA:胫骨近端后角

mLDFA: Mechanical lateral distal femoral angle  MPTA: Medial proximal tibial angle aPDFA: Anatomic posterior distal femoral angle aPPTA: Anatomic posterior proximal tibial angle

图 1

排除标准:① 关节内畸形导致的骨关节炎;② 既往有膝关节手术史、感染史;③ 既往有精神疾病史;④ 类风湿性关节炎、痛风性关节炎等;⑤ 患有其他内科严重疾病或全身感染者。

2019年6月—2024年1月中国人民解放军联勤保障部队第九二〇医院共30例(33膝)患者符合选择标准纳入研究。其中15例(17膝)行CORI无影像机器人导航辅助关节内截骨TKA(机器人组),15例(16膝)行传统关节内截骨TKA(传统组)。在2024年1月正式购置CORI机器人设备之前,我院开展的相关研究均为研究者发起的临床试验,本研究中11例使用的是试用设备。两组患者年龄、性别、身体质量指数、患膝侧别、关节外畸形角度[8]、畸形位置、畸形类型及术前膝关节活动度、美国膝关节协会评分(KSS)的膝关节评分及功能评分、下肢力线偏移等基线资料比较差异均无统计学意义(P>0.05)。见表1

表 1.

Comparison of baseline data between the two groups

两组患者基线资料比较

基线资料
Baseline data
机器人组
Robot group
传统组
Traditional group
统计量
Statistical value
P
P value
年龄(x±s,岁) 64.3±6.2 64.6±7.3 t=−0.129 0.899
性别(男/女,例) 9/6 7/8 0.715
身体质量指数(x±s,kg/m2 24.6±1.9 25.2±1.8 t=−0.816 0.428
患膝侧别(左侧/右侧/双侧,例) 5/8/2 7/7/1 0.693
关节外畸形角度(x±s,°) 13.4±3.5 12.3±2.8 t=0.961 0.353
畸形位置(股骨/胫骨/股骨联合胫骨,例) 7/6/2 8/6/1 0.819
畸形类型(骨折后畸形愈合/先天性发育畸形,例) 13/2 14/1 1.000
术前膝关节活动度(x±s,°) 81.7±5.2 83.0±4.6 t=−0.718 0.484
术前KSS膝关节评分(x±s,分) 46.5±4.5 45.0±4.9 t=1.143 0.272
术前KSS功能评分(x±s,分) 42.7±3.7 42.3±5.6 t=0.174 0.865
术前下肢力线偏移(x±s,°) 13.7±3.5 13.6±3.3 t=0.090 0.929

1.2. 手术方法

所有手术均由同一名高年资医师主刀完成。患者于全身麻醉下取仰卧位,大腿根部上止血带,常规消毒、铺单。取膝前正中皮肤切口,依次切开皮肤、皮下组织,沿股四头肌肌腱、髌骨内侧缘至胫骨结节内侧弧形切开髌上囊及关节囊;将髌骨向外侧翻转,屈膝90°,切除增生滑膜组织,残余半月板和前、后交叉韧带;清除股骨及胫骨增生骨赘,松解内、外侧软组织。

机器人组:完成术中暴露后,安装股骨及胫骨的固定针和追踪器,调整摄像头方向,使追踪器在膝关节活动中始终处于摄像头视野范围内。在股骨及胫骨不会受到干扰的位置安装检查钉,整个手术过程中应用检查钉确认追踪器是否移动。依次完成踝关节中心、膝关节中心、髋关节中心、术前机械对准、屈曲范围、胫骨表面点及股骨表面点的收集配准。配准后进行股骨及胫骨假体植入规划,以经典力学对线为基准,股骨及胫骨截骨垂直于机械轴;适当调整股骨及胫骨假体内外翻,下肢力线偏移较大者最终下肢力线残留少许内外翻,在可允许范围内避免患者因过多下肢力线矫正而产生不适感。随后拉伸侧副韧带以评估关节间隙和韧带张力,当关节间隙不平衡时,可进行侧副韧带松解并重新收集松弛度信息,必要时旋转及平移假体,实现适当的间隙空间。依据手术规划使用手持式全方位磨钻分别对胫骨平台、股骨远端、股骨髁前方、股骨后髁和股骨斜面截骨,安放假体试模,检查屈伸间隙是否平衡,下肢力线、患肢伸直状态及髌骨轨迹是否满意。取出试模,局部注射“鸡尾酒”,使用骨水泥(Heraeus公司,德国)填充。安装假体后使用术后应力间隙评估功能收集基线和应力间隙,并比较术后间隙与规划间隙的差异。满意后冲洗术区,拆除固定针及检查钉,逐层关闭切口,患肢加压包扎。见图2

图 2.

Surgical procedure for CORI robot-assisted TKA

CORI机器人辅助TKA手术操作过程

a. 收集股骨自由点并定义股骨轴线;b. 假体植入规划;c. 拉伸侧副韧带,执行间隙评估;d. 使用磨钻进行股骨截骨;e. 术后间隙评估;f. 术后下肢对线和活动度收集

a. Collected femoral landmark points and defining the femoral axis; b. Implant planning for the prosthesis; c. Stretched the collateral ligaments and performed gap assessment; d. Using a reamer for femoral osteotomy; e. Postoperative gap assessment; f. Postoperative lower limb alignment and range of motion assessment

图 2

传统组:术前根据双下肢全长正位X线片规划股骨和胫骨截骨位置,股骨进行髓内定位截骨,胫骨进行髓外定位,根据屈伸间隙平衡及关节活动松紧度进行调整,充分松解软组织,选择合适的假体及衬垫安装。其余处理同机器人组。

1.3. 术后处理及疗效评价指标

两组术后均予以头孢呋辛静脉输液抗感染;术后8 h口服利伐沙班抗凝;术后3、6 h分别静脉注射氨甲环酸1 g,采用多模式镇痛方案。术后第1天开始指导患者扶助行器下地功能锻炼;术后2周拆线,逐步增加功能锻炼强度。

记录并比较两组患者手术时间及并发症发生情况,记录手术前后血红蛋白水平差异以评估术中失血量[12]。术后1、3、6、12个月门诊随访。术前及术后6个月,记录患者膝关节活动度;通过X线片测量机械胫股角(髋关节中点至膝关节中点的连线与膝关节中点至踝关节中点连线的夹角),以180° 为参考标准,机械胫股角与其差值的绝对值则作为下肢力线偏移程度;采用KSS膝关节评分和功能评分评价患者术后膝关节功能。

1.4. 统计学方法

采用SPSS24.0统计软件进行分析。计量资料经Shapiro-Wilk检验均符合正态分布,数据以均数±标准差表示,组间比较采用独立样本t检验,组内手术前后比较采用配对t检验;计数资料组间比较采用Fisher确切概率法。检验水准取双侧α=0.05。

2. 结果

两组手术时间比较差异无统计学意义(P>0.05);机器人组术中失血量少于传统组,差异有统计学意义(P<0.05)。两组患者均获随访,随访时间6~12个月,平均8.7个月。患者切口均愈合良好,未发生血栓形成、感染等术后并发症。术后6个月X线片检查示,两组患者假体位置良好,均未出现假体松动或脱位等表现。两组膝关节活动度、下肢力线偏移及KSS膝关节评分和功能评分均较术前显著改善,差异有统计学意义(P<0.05);机器人组下肢力线偏移和KSS功能评分手术前后变化值均优于传统组,差异有统计学意义(P<0.05),其余指标手术前后变化值两组间比较差异均无统计学意义(P>0.05)。见表2图3

表 2.

Comparison of outcome indicators between the two groups (x±s)

两组患者结局指标比较(x±s

结局指标
Outcome indicator
机器人组
Robot group
传统组
Traditional group
效应值(95%CI
Effect value (95%CI)
P
P value
手术时间(min) 89.4±4.4 87.5±4.0 MD=1.9(−2.6,6.4) 0.174
术中失血量(mL) 17.0±3.4 22.1±4.2 MD=−5.1(−7.9,−2.3) 0.002
手术前后变化值
 膝关节活动度(°) 31.3±4.8 29.3±5.6 MD=2.0(−1.9,5.9) 0.304
 下肢力线偏移(°) 11.6±2.2 9.5±1.9 MD=2.1(0.6,3.7) 0.008
 KSS膝关节评分(分) 47.1±3.2 48.1±2.8 MD=−1.0(−3.3,1.3) 0.371
 KSS功能评分(分) 43.9±2.1 37.4±5.1 MD=6.5(3.6,9.4) <0.001

图 3.

A 48-year-old female patient with left knee osteoarthritis (Kellgren-Lawrence grade ) and extra-articular deformity in robot group

机器人组患者,女,48岁,左膝骨关节炎(Kellgren-Lawrence 级)合并关节外畸形

a. 术前下肢外观;b. 术前X线片示股骨侧关节外畸形角度为35.9°;c. 机器人辅助术中规划,股骨内翻4°、胫骨假体内翻3°;d. 术中股骨表面点的收集配准;e. 使用磨钻进行截骨;f. 术中截骨未损伤外侧副韧带(圈内);g. 安装试模评估屈伸间隙,膝关节0°~120° 屈伸过程中,内外侧间隙控制在1 mm左右;h. 术后6个月X线片示下肢力线残留7° 内翻,假体位置满意

a. Preoperative lower limb appearance; b. Preoperative X-ray films showed a femoral lateral joint deformity angle of 35.9°; c. Intraoperative planning with robot assistance, femoral varus 4° and tibial component varus 3°; d. Intraoperative collection and registration of femoral surface points; e. Osteotomy performed using a reamer; f. Intraoperative osteotomy without damaging the lateral collateral ligament (circled); g. Trial component installation to evaluate flexion-extension gaps, with the medial and lateral gaps maintained at approximately 1 mm during knee flexion from 0° to 120°; h. X-ray films at 6 months after operation showed a residual 7° varus alignment of the lower limb, with satisfactory component positioning

图 3

3. 讨论

膝骨关节炎是临床常见的退行性疾病,当伴随关节外畸形时,治疗难度显著增加。其中,伴严重关节外畸形(如股骨侧畸形≥20°,胫骨侧畸形≥30°)的膝骨关节炎患者较为少见,通常需通过截骨术矫正[13]。截骨术联合TKA可改善机械轴,但增加了手术时间、创伤、并发症风险及延长了康复周期;Lonner等[14]报道术后并发症发生率为45%,包括截骨不愈合、关节僵硬和急性肺栓塞等。关节内代偿性截骨能够在一次手术中解决畸形并完成TKA,适用于高危老年患者,但可能导致更多韧带损伤风险,尤其是在畸形角度较大时[15-16];且由于髓腔变形或残留内固定物,传统器械定位变得更加困难[17]。另外,传统TKA术前需要基于X线片上的解剖轴规划来确定假体位置,当关节外畸形时会由于骨赘形成和肢体轴线角度异常,而出现误导性的关节运动学表现,这些问题会改变解剖轴,进一步导致传统TKA治疗关节外畸形的技术不够充分[18-19]

与传统TKA中垂直于机械轴的截骨相比,机器人在处理关节外畸形时可以通过精准重建机械轴并进行个性化假体安装,减少侧副韧带损伤风险,使得其可应用于较严重且复杂的关节外畸形[20]。当关节外畸形较严重时,机器人在规划时可通过股骨及胫骨的配合安装来减少关节内代偿性截骨,同时可以在安全范围内残留少量下肢力线偏移,进一步减少关节内截骨造成的侧副韧带损伤风险[21]。除了个性化假体安装,机器人还可以通过机械臂或智能磨钻实现精准截骨,并且在术中实时评估关节间隙和韧带张力。本研究以1例机器人组患者为例(图3),股骨侧关节外畸形角度为内翻35.9°,下肢力线内翻23.1°,既往观点认为股骨畸形在冠状面上≥20° 时,通过关节内矫正会损伤侧副韧带,建议截骨术矫正畸形。而在CORI机器人辅助下,我们规划了股骨及胫骨假体个性化安装,股骨侧假体内翻4° 安装,胫骨假体侧内翻3° 安装,残留7° 下肢力线内翻,从而使术中截骨及软组织松解后并未损伤侧副韧带,并获得良好屈伸间隙和韧带平衡,最终通过关节内截骨TKA获得了满意临床疗效。

基于术前是否行CT检查,机器人可分为基于影像机器人和无影像机器人[22-23]。一项关于基于影像机器人系统的Meta分析显示,与传统TKA相比,机器人具有更精确的机械对准和假体位置,但在活动度改善和并发症发生率方面无显著差异,并且因过度辐射暴露而导致不良事件风险增加[24]。与基于影像机器人系统相比,无影像机器人系统减少了患者的辐射暴露及影像学费用,具有良好的应用前景。CORI机器人系统是无影像的手持式半自主机器人系统,无需术前CT扫描,同时允许实时规划和间隙评估、优化对齐和平衡[25]。该系统在外科医生控制下,通过手持式磨钻进行个性化精确截骨,其中径向截骨精度误差≤0.1 mm,轴向截骨精度误差≤0.5 mm。CORI机器人系统采用的手持式尖端磨钻比传统锯片产生的噪声暴露更低[26]。Hönecke等[27]比较了MAKO 机器人、NAVIO 机器人和 CORI 机器人辅助TKA 期间的平均噪声和峰值声压,发现使用磨钻的NAVIO 机器人和 CORI 机器人在平均噪声水平方面显著低于使用锯片的MAKO机器人,第二代CORI机器人在峰值声压水平方面显著低于第一代NAVIO机器人。整体噪声的降低可以减少手术室工作人员的听力损失,减少术后并发症并降低外科医生的精神压力[28]

本研究使用CORI无影像机器人系统辅助TKA治疗合并关节外畸形的膝骨关节炎患者,同时与传统TKA治疗进行对照研究。结果显示,两组手术时间相当,但机器人组术中失血量明显低于传统组。虽然机器人辅助TKA在术中需要放置和移除检查钉、术中规划以及使用机器人系统记录关节数据,这些步骤增加了手术时间,并且与主刀医生的学习曲线相关[29],但由于机器人系统能够精准定位机械轴线,避免了术中髓内定位,并减少了由于畸形导致力线定位困难引起的反复测量下肢力线需求,在一定程度上缩短了手术时间。CORI机器人优化了手术流程,提高了效率和易用性,显著缩短了学习曲线。具体表现为自动标志点捕捉减少了72%的数据点收集,减少了40%的工作步骤,加快了表面模型生成速度,并使骨性切除速度提高了29%[30]。Weaver等[31]对CORI机器人辅助TKA的手术时间进行分析,发现CORI机器人的学习曲线约为6例手术,在学习阶段向熟练阶段过渡过程中,术者需要克服骨骼过度切除、软组织损伤以及机器人硬件或软件故障等问题。这些因素综合作用导致两组患者的手术时间相当。术中失血量较低的原因是传统TKA术中使用股骨髓内定位法导致髓腔出血,这与避免使用髓内定位器械的既往研究结果一致[32]。另一项研究则将其归因于通过最大限度减少软组织创伤和进行更精确的骨切割来保存血管结构[33]

从膝关节活动度和KSS膝关节评分角度看,机器人辅助TKA和传统TKA在手术后达到的结果相似,表明机器人辅助技术并未在恢复膝关节活动度及膝关节稳定性方面具有显著优势。机器人组的下肢力线偏移及KSS功能评分手术前后变化值优于传统组,表明当股骨或胫骨畸形时,使用机器人辅助TKA可达到恢复下肢力线、改善膝关节功能的目的。通过在规划阶段精准收集下肢机械对准,同时在膝关节范围内施加内翻和外翻应力来测量软组织张力,术者可以根据患者情况个性化选择假体和定位以及所需截骨量,并且可实时调整规划提供间隙平衡反馈[34]。除了在规划期间进行外,还可在试验阶段和软组织释放后重复测量软组织张力,最终实现高度个性化的最佳方案,解决了传统TKA中定位困难及误差问题,使患者获得满意临床疗效。我们认为,一个TKA手术如果能够减轻患者疼痛、通过充分的术后对准实现完全稳定的活动能力并改善远期效果,则是成功的。Rossi等[35]使用无影像机器人辅助 TKA 对30 例严重膝关节畸形和相关韧带松弛进行治疗,这些膝关节表现出至少15° 内翻或10° 外翻,在至少 6 个月随访中显示出可靠的影像学结果和临床结果。本研究结果与之类似,突显了无影像机器人辅助TKA处理膝关节畸形的优势。首先,该技术能够减少患者术前辐射暴露,提高手术便捷性,缩短手术准备时间。其次,无影像机器人能够实现个性化术中规划,特别是对于严重畸形患者,可在安全范围内残留少许畸形,避免过度截骨矫正可能带来的韧带不稳定及软组织损伤。最后,实时调整规划与间隙平衡反馈的功能,对关节外畸形患者的关节内代偿性截骨提供了更加精确的术中软组织平衡调整。

综上述,与传统TKA相比,无影像机器人辅助TKA治疗伴关节外畸形的膝骨关节炎患者,术中失血量更少,术后下肢力线重建更精准,早期临床疗效更佳,具有良好应用前景。但本研究病例数较少、随访时间较短,仍需要更大规模研究和更长时间随访来验证本研究结论。

利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道

伦理声明 研究方案经中国人民解放军联勤保障部队第九二〇医院伦理委员会批准[伦审 2021-069(科)-02]

作者贡献声明 孟晨:文章构思、研究整体设计及论文撰写;徐永清、施荣茂、浦路桥:参与研究设计并整理研究数据;季建安、姚兴友、周喜宗:数据收集及统计分析;李川:研究设计指导

Funding Statement

昆医联合专项面上项目(202001AC070337);云南省科技人才与平台计划(202105AD160027);云南省科技厅科技计划项目(202102AA310068)

Kunming Medical University Joint Special Project-General Program (202001AC070337); Yunnan Province Science and Technology Talent and Platform Program (202105AD160027); Yunnan Province Department of Science and Technology Science and Technology Plan Project (202102AA310068)

References

  • 1.Moyad TF, Estok D Simultaneous femoral and tibial osteotomies during total knee arthroplasty for severe extra-articular deformity. J Knee Surg. 2009;22(1):21–26. doi: 10.1055/s-0030-1247722. [DOI] [PubMed] [Google Scholar]
  • 2.Sharma L, Song J, Felson DT, et al The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA. 2001;286(2):188–195. doi: 10.1001/jama.286.2.188. [DOI] [PubMed] [Google Scholar]
  • 3.Salazar-López JN, Yáñez-Mejía LG, Rodríguez-Pesina AH, et al How common is extra-articular knee deformity? How to achieve a “safe zone” alignment total knee arthroplasty in patients with extra-articular deformity. Acta Ortop Mex. 2023;37(2):79–84. doi: 10.35366/112986. [DOI] [PubMed] [Google Scholar]
  • 4.Archibeck MJ, White RE What’s new in adult reconstructive knee surgery. J Bone Joint Surg (Am) 2003;85(7):1404–1411. doi: 10.2106/00004623-200307000-00056. [DOI] [PubMed] [Google Scholar]
  • 5.Chua W, Wang W Intra-articular correction of extra-articular tibial deformities with total knee arthroplasty. Int J Surg Case Rep. 2013;4(3):276–278. doi: 10.1016/j.ijscr.2012.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Loures FB, Correia W, Reis JH, et al Outcomes after knee arthroplasty in extra-articular deformity. Int Orthop. 2019;43(9):2065–2070. doi: 10.1007/s00264-018-4147-9. [DOI] [PubMed] [Google Scholar]
  • 7.Veltman ES, van Wensen RJA, Defoort KC, et al Single-stage total knee arthroplasty and osteotomy as treatment of secondary osteoarthritis with severe coronal deviation of joint surface due to extra-articular deformity. Knee Surg Sports Traumatol Arthrosc. 2017;25(9):2835–2840. doi: 10.1007/s00167-015-3889-9. [DOI] [PubMed] [Google Scholar]
  • 8.Sculco PK, Kahlenberg CA, Fragomen AT, et al Management of extra-articular deformity in the setting of total knee arthroplasty. J Am Acad Orthop Surg. 2019;27(18):e819–e830. doi: 10.5435/JAAOS-D-18-00361. [DOI] [PubMed] [Google Scholar]
  • 9.St Mart JP, Goh EL The current state of robotics in total knee arthroplasty. EFORT Open Rev. 2021;6(4):270–279. doi: 10.1302/2058-5241.6.200052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Paley D, Pfeil J Principles of deformity correction around the knee. Orthopade. 2000;29(1):18–38. doi: 10.1007/s001320050004. [DOI] [PubMed] [Google Scholar]
  • 11.谭杨, 刘翰昆, 陈廖斌 伴有关节外畸形的全膝关节置换术. 临床外科杂志. 2019;27(4):279–282. doi: 10.3969/j.issn.1005-6483.2019.04.003. [DOI] [Google Scholar]
  • 12.Fakharian M, Fakharian A, Keshmiri Z, et al Comparison of the effect of combined administration of intravenous and intra-articular tranexamic acid versus their administration alone in the management of blood loss in total knee arthroplasty: a prospective, multicenter study in Iran. BMC Musculoskelet Disord. 2023;24(1):974. doi: 10.1186/s12891-023-07089-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Wang JW, Wang CJ Total knee arthroplasty for arthritis of the knee with extra-articular deformity. J Bone Joint Surg (Am) 2002;84(10):1769–1774. doi: 10.2106/00004623-200210000-00005. [DOI] [PubMed] [Google Scholar]
  • 14.Lonner JH, Siliski JM, Lotke PA Simultaneous femoral osteotomy and total knee arthroplasty for treatment of osteoarthritis associated with severe extra-articular deformity. J Bone Joint Surg (Am) 2000;82(3):342–348. doi: 10.2106/00004623-200003000-00005. [DOI] [PubMed] [Google Scholar]
  • 15.Papagelopoulos PJ, Karachalios T, Themistocleous GS, et al Total knee arthroplasty in patients with pre-existing fracture deformity. Orthopedics. 2007;30(5):373–378. doi: 10.3928/01477447-20070501-17. [DOI] [PubMed] [Google Scholar]
  • 16.Wolff AM, Hungerford DS, Pepe CL The effect of extraarticular varus and valgus deformity on total knee arthroplasty. Clin Orthop Relat Res. 1991;(271):35–51. [PubMed] [Google Scholar]
  • 17.李国梁, 韩广普, 张金秀, 等 胫骨机械轴定位器在伴胫骨关节外畸形的人工全膝关节置换术中的应用. 中国修复重建外科杂志. 2013;27(7):847–850. doi: 10.7507/1002-1892.20130185. [DOI] [Google Scholar]
  • 18.Alturki AA, Alshammari NA, Albassam AL, et al Robotic-assisted total knee arthroplasty for extra-articular femur deformity correction. J Surg Case Rep. 2023;2023(7):rjad395. doi: 10.1093/jscr/rjad395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Alghamdi A, Rahmé M, Lavigne M, et al Tibia valga morphology in osteoarthritic knees: importance of preoperative full limb radiographs in total knee arthroplasty. J Arthroplasty. 2014;29(8):1671–1676. doi: 10.1016/j.arth.2014.03.001. [DOI] [PubMed] [Google Scholar]
  • 20.Meng C, Li C, Xu Y Progress in computer-assisted navigation for total knee arthroplasty in treating knee osteoarthritis with extra-articular deformity. Orthop Surg. 2024;16(11):2608–2619. doi: 10.1111/os.14216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Meng C, Yang S, Zhang Y, et al Simulation of osteotomy in total knee arthroplasty with femoral extra-articular deformity assisted by artificial intelligence: a study based on three-dimensional models. J Orthop Surg Res. 2024;19(1):641. doi: 10.1186/s13018-024-05126-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Zong C, Wang Q, Kuo G, et al A commentary on ‘Robotic-assisted total knee arthroplasty is more advantageous for knees with severe deformity: a randomized controlled trial study design’. Int J Surg. 2024;110(2):1302–1303. doi: 10.1097/JS9.0000000000000903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Shah SM. After 25 years of computer-navigated total knee arthroplasty, where do we stand today? Arthroplasty, 2021, 3(1): 41.
  • 24.Ren Y, Cao S, Wu J, et al Efficacy and reliability of active robotic-assisted total knee arthroplasty compared with conventional total knee arthroplasty: a systematic review and meta-analysis. Postgrad Med J. 2019;95(1121):125–133. doi: 10.1136/postgradmedj-2018-136190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Cochrane NH, Kim BI, Leal J, et al Comparing a robotic imageless second-generation system to traditional instrumentation in total knee arthroplasty: A matched cohort analysis. J Orthop. 2024;57:1–7. doi: 10.1016/j.jor.2024.05.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Peters MP, Feczko PZ, Tsang K, et al Noise exposure in TKA surgery; Oscillating tip saw systems vs oscillating blade saw systems. J Arthroplasty. 2016;31(12):2773–2777. doi: 10.1016/j.arth.2016.05.030. [DOI] [PubMed] [Google Scholar]
  • 27.Hönecke T, Schwarze M, Wangenheim M, et al Noise exposure during robot-assisted total knee arthroplasty. Arch Orthop Trauma Surg. 2023;143(6):2813–2819. doi: 10.1007/s00402-022-04454-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Engelmann CR, Neis JP, Kirschbaum C, et al A noise-reduction program in a pediatric operation theatre is associated with surgeon’s benefits and a reduced rate of complications: a prospective controlled clinical trial. Ann Surg. 2014;259(5):1025–1033. doi: 10.1097/SLA.0000000000000253. [DOI] [PubMed] [Google Scholar]
  • 29.Vermue H, Batailler C, Monk P, et al The evolution of robotic systems for total knee arthroplasty, each system must be assessed for its own value: a systematic review of clinical evidence and meta-analysis. Arch Orthop Trauma Surg. 2023;143(6):3369–3381. doi: 10.1007/s00402-022-04632-w. [DOI] [PubMed] [Google Scholar]
  • 30.Sicat CS, Chow JC, Kaper B, et al Component placement accuracy in two generations of handheld robotics-assisted knee arthroplasty. Arch Orthop Trauma Surg. 2021;141(12):2059–2067. doi: 10.1007/s00402-021-04040-6. [DOI] [PubMed] [Google Scholar]
  • 31.Weaver DJ, Deshmukh S, Bashyal R, et al Complications and learning curve associated with an imageless burr-based (CORI) robotic-assisted total knee arthroplasty system: Results from first 500 cases. Indian J Orthop. 2024;58(8):1109–1117. doi: 10.1007/s43465-024-01200-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Thiengwittayaporn S, Uthaitas P, Senwiruch C, et al Imageless robotic-assisted total knee arthroplasty accurately restores the radiological alignment with a short learning curve: a randomized controlled trial. Int Orthop. 2021;45(11):2851–2858. doi: 10.1007/s00264-021-05179-y. [DOI] [PubMed] [Google Scholar]
  • 33.Onggo JR, Onggo JD, De Steiger R, et al Robotic-assisted total knee arthroplasty is comparable to conventional total knee arthroplasty: a meta-analysis and systematic review. Arch Orthop Trauma Surg. 2020;140(10):1533–1549. doi: 10.1007/s00402-020-03512-5. [DOI] [PubMed] [Google Scholar]
  • 34.Adamska O, Modzelewski K, Szymczak J, et al Robotic-assisted total knee arthroplasty utilizing NAVIO, CORI imageless systems and manual TKA accurately restore femoral rotational alignment and yield satisfactory clinical outcomes: A randomized controlled trial. Medicina (Kaunas) 2023;59(2):236. doi: 10.3390/medicina59020236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Rossi SMP, Sangaletti R, Andriollo L, et al The use of a modern robotic system for the treatment of severe knee deformities. Technol Health Care. 2024;32(5):3737–3746. doi: 10.3233/THC-231261. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES