Skip to main content
Jornal Vascular Brasileiro logoLink to Jornal Vascular Brasileiro
. 2025 Jan 13;23:e20240046. doi: 10.1590/1677-5449.202400462
View full-text in Portuguese

Techniques for randomization and allocation for clinical trials

Anna Carolina Miola 1, Ana Cláudia Cavalcante Espósito 2, Hélio Amante Miot 1
PMCID: PMC11758574  PMID: 39866165

Abstract

Intervention studies require all participants to originate from the same population, with random allocation to intervention groups to ensure comparability. Randomization is crucial for minimizing confounding factors, allowing differences in outcomes to be attributed to the intervention. Simple randomization performs well for large samples (>100 per group), but smaller samples may require block or stratified randomization to balance group sizes and covariates. When randomization isn't feasible, quasi-randomized methods (e.g., based on dates or enrollment order) can help but must compensate with multivariate adjustments. Moreover, blinding and allocation concealment enhance internal validity and reproducibility. Allocation concealment (e.g., sealed envelopes) prevents bias during participant assignment while blinding mitigates detection and performance biases. Precise methodological descriptions in clinical trial registrations and publications enhance study reliability and reproducibility, highlighting the importance of rigorous planning and transparent reporting in intervention research. This article reviews the key concepts of randomization, blinding, and allocation concealment in interventional studies

Keywords: Randomization, Allocation Concealment, Intervention Studies, Bias Reduction, Methodological Validity


Quantitative analysis of data collected in intervention studies requires that the sample is drawn from the same population (at each center) and that participants are allocated to groups at random, i.e. with no interference by researchers or participants. This ensures that each individual has the same chance of being designated to any of the intervention groups (IGs).1-4

The importance of randomized allocation lies in its capacity to homogenize unknown or unmeasured confounding factors, distributing them across the groups at random. This helps to assemble GIs that are comparable in terms of their baseline characteristics, making attribution of any differences observed to the results of the intervention itself more reliable. To achieve this, in addition to rigorous inclusion criteria, it is imperative to employ techniques for randomization, blinding, and allocation to reduce selection biases and increase the experiment’s internal validity, maximizing the reliability and reproducibility of the results.1,3,5 Some examples of the main types of randomization and their characteristics are given in Chart 1 and 2 respectively.

Chart 1. Examples of methods for randomization of 32 participants to two intervention groups (A and B).

Type of randomization Intervention Sequence of allocation of the participants
Simple A 1, 2, 4, 8, 9, 10, 15, 17, 21, 25, 26, 27, 28, 32
B 3, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 29, 30, 31
In blocks A 1, 3, 6, 8, 9, 12, 14, 16, 17, 20, 21, 24, 26, 28, 29, 31
B 2, 4, 5, 7, 10, 11, 13, 15, 18, 19, 22, 23, 25, 27, 30, 32
Stratified A Stratum X: 1, 3, 6, 8, 9, 12, 14, 16 Stratum Y: 17, 20, 21, 24, 26, 28, 29, 31
B Stratum X: 2, 4, 5, 7, 10, 11, 13, 15 Stratum Y: 18, 19, 22, 23, 25, 27, 30, 32
Paired A Var W: 1, 3, 6, 8, Var X: 9, 12, 14, 16 Var Y: 17, 20, 21, 24, Var Z: 26, 28, 29, 31
B Var W: 2, 4, 5, 7, Var X: 10, 11, 13, 15 Var Y: 18, 19, 22, 23, Var Z: 25, 27, 30, 32
Adaptive by minimization A 1, 2, 4....dependent on the characteristics of initial recruits for pairing by characteristics.
B 3, 5, 6
Mendelian A 1, 2, 4....dependent on the characteristics of the initial recruits for genetic pairing.
B 3, 5, 6

Chart 2. Advantages and disadvantages of the main methods for randomization in clinical trials.

Randomization method Advantages Disadvantages
Simple Easy to reproduce. May cause imbalances between groups with small samples.
In blocks Reduces imbalances between groups. Allocation sequence can be inferred by researchers in open trials.
Stratified in blocks Distributes possible predictive factors of the outcome equally across groups. Generates very small groups when there are many strata, which compromises the power of the statistical analysis.
Paired Reduces imbalances between groups. Makes recruitment of patients more difficult, since it should be done simultaneously.
Enables comparison of participants with the same predictive factors.
Adaptive by minimization Enables homogenization between groups to be performed as the study progresses. Demands continuous monitoring with software.
Mendelian Enables a constituent factor to be distributed homogeneously between groups. May be influenced by other exposure factors with other variables that have not been considered (heterogeneous genetics, epigenetics, interaction between genes).

In its similarity to a simple lottery draw, simple randomization is technically best in terms of comprehensibility and feasibility. However, it can create IGs of disproportionate sizes and can cause imbalances in the proportion of covariates of interest when small samples are used (n < 100). In a study by Coelho et al.,6 52 patients were randomized to receive elastic compression therapy for 7 days or to wear elastic stockings for 24 hours after phlebectomy. Demographic covariates were adequately homogeneous, despite a numerical imbalance between the IGs (n = 20 vs. N = 32 participants).

Block randomization guarantees that those allocated are distributed equally among the IGs, avoiding numerical disproportions between different interventions and enabling a certain degree of parallelism in allocations. However, for small samples there is still the risk of imbalance between relevant covariates between IGs. Additionally, in open trials, in which blocks are small, it is possible for researchers to anticipate which intervention will be drawn for the next participant to be allocated to a block, introducing selection bias.7 In a study by Garcia et al.,8 20 participants were randomized in blocks to two IGs, to evaluate two training programs for patients with intermittent claudication. Although the IG sizes were balanced, the sample was too small to enable adequate homogenization of demographic covariates such as sex.

In order to minimize the risk that a covariate of relevance to the study outcome is imbalanced between the IGs and also enable stratified analyses of the results a posteriori, stratified block randomization should be used. In practice, this technique creates smaller strata with allocation blocks for individuals with or without the covariates of interest.7 An example would be stratification of patients with diabetes mellitus or smokers in trials of atherosclerosis treatments.

Randomized block allocation sequences, with or without stratification, can be generated online at sites such as GraphPad9and Research Randomizer.10

However, even with the stratification of blocks, the use of small samples can still cause inadequate homogenization of potential confounders such as age, sex, or ethnicity within the IGs. These disproportions should then be weighted in the analysis of the results using multivariate analyses. Paired randomization techniques can be used to create more strata or quotas for the inclusion of participants a priori. However, balancing the groups for pairing may make it difficult to recruit participants, delaying the study, since paired participants should ideally start their interventions in parallel.7

In order not to delay recruitment, adapted randomization by minimization aims to balance the IGs in terms of possible confounding factors, which occur dynamically during the recruitment phase. After initial simple randomization and allocation of some individuals, the baseline characteristics of the groups are analyzed and a calculation is performed to guarantee pairing and balanced stratification of subsequent participants recruited. This method requires software for continuous monitoring during the entire recruitment stage.11

In Mendelian randomization, genetic variants associated with the exposure of interest are used as pairing and stratification parameters, which requires prior knowledge of the genetic status of individuals eligible for the study within the population of interest.12,13

In general, simple randomization can be used if the sample size is greater than 100 participants per group. When smaller than this, block randomization guarantees better equilibrium of group sizes. However, if there is a need for a posteriori analysis by subsets (for example, disease severity, age group, sex/gender, body composition, prior treatments, comorbidities), randomization stratified by the variables of interest should be preferred.14 More elaborate methods, such as Mendelian, factorial, or cluster randomization, adaptive strategies, and minimization, should be supervised by an experienced statistics professional, with adequate computational support.15-17

Researchers should avail themselves of all available resources to guarantee a certain randomization for the allocation of participants to IGs. However, there are situations in which full randomization is not possible. In such cases, the method of non-randomized allocation that stands out is sequential (by convenience), in which participants are allocated based on a sequence defined at the time of recruitment. Quasi-randomized allocation can be used to minimize the burden of lack of randomization, in which a variable, non-random criterion is used to define the GI, such as study registration number (odd or even last number), date of birth, order of recruitment to the clinical trial, or day of the week. Moreover, in retrospective studies that compare interventions (for example, treatment cohorts) and other designs that use non-randomized allocation, conducting sensitivity analyses and multivariate adjustment for confounding variables is essential for ratification of the results.

The entire randomization process is intended to guide the allocation of participants to IGs in a homogeneous manner, according to the study characteristics.18 It is also important that the allocation process is protected from influence, whether intentional or otherwise, by members of the study research team, in order to minimize inclusion and detection biases. It is also of value to conduct allocation in a manner that precludes researchers from predicting the sequence of interventions, which could introduce bias through the selection of patients more or less favorable for the intervention.19,20

Allocation concealment is the term used to describe the randomization process in which the treatment allocated is unknown before the inclusion of the participant in the study.21,22 This can be achieved using opaque sealed envelopes numbered and organized in advance by someone external to the study team.23,24

Blinding, in turn, refers to masking the interventions from the individuals involved in the study after the allocation of participants. It can be applied to the participants (a blind study), to the participant and the investigator or rater of results (double-blind, rater-blind), or to everybody involved (triple-blind).21 However, it is not always possible to blind the entire research chain (participants, investigators, and raters) throughout the study and analysis of the results, especially not in surgical trials. In addition to selection bias, detection bias (of outcomes) and performance bias (of the interventions) should be considered in these cases.25,26 The research team must conscientiously ensure that at least one external rater is blinded to the IGs and that the outcomes are as objective as possible.

There are also exceptional situations that can make randomized allocation difficult since consent to randomization can be difficult to obtain if the patient has a preconceived idea about the interventions involved or when the study involves placebos.26-29 For ethical reasons, participants may have the right to agree to or refuse the IG allocation to which they are randomized. Trials with special designs (for example, Zelen design, double randomization, crossover trial) were developed to deal with such contingencies and take account of the reallocation of participants after initial randomization, but discussion of these designs is beyond the scope of this text.30-32

Finally, regardless of whether intervention studies benefit from techniques for randomization, blinding, and allocation that reduce selection and detection biases, it is still necessary to describe the methodology used in great detail, since this directly affects the internal validity of the results. Whether the methodological description is included on clinical trial registers or provided as supplementary material with the articles, it improves the reproducibility of the study and should be encouraged, even though only a small proportion of clinical trials present such details.33

Biographies

Assistant Professor, Department of Dermatology and Radiotherapy, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP).

Professor, Universidade do Oeste Paulista (Unoeste).

Full Professor, Department of Dermatology and Radiotherapy, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP).

Footnotes

How to cite: Miola AC, Espósito ACC, Miot HA. Techniques for randomization and allocation for clinical trials. J Vasc Bras. 2024;23:e20240046. https://doi.org/10.1590/1677-5449.202400462

Financial support: None.

The study was carried out at Departamento de Dermatologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.

REFERENCES

  • 1.Altman DG, Bland JM. Statistics notes. Treatment allocation in controlled trials: why randomise? BMJ. 1999;318(7192):1209. doi: 10.1136/bmj.318.7192.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sacks H, Chalmers TC, Smith H., Jr Randomized versus historical controls for clinical trials. Am J Med. 1982;72(2):233–240. doi: 10.1016/0002-9343(82)90815-4. [DOI] [PubMed] [Google Scholar]
  • 3.Roberts C, Torgerson D. Understanding controlled trials: randomisation methods in controlled trials. BMJ. 1998;317(7168):1301–1310. doi: 10.1136/bmj.317.7168.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Miola AC, Miot HA. P-value and effect-size in clinical and experimental studies. J Vasc Bras. 2021;20:e20210038. doi: 10.1590/1677-5449.210038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Zhao W. Selection bias, allocation concealment and randomization design in clinical trials. Contemp Clin Trials. 2013;36(1):263–265. doi: 10.1016/j.cct.2013.07.005. [DOI] [PubMed] [Google Scholar]
  • 6.Coelho F, No, Araujo WJB, Belczak S, et al. Influence of compression therapy following varicose vein surgery: a prospective randomized study. J Vasc Bras. 2023;22:e20220052. doi: 10.1590/1677-5449.202200522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Hulley SB, Cummings SR, Browner WS. Designing clinical research. 3rd. New York: Lippincott Williams & Wilkins; 2006. [Google Scholar]
  • 8.Garcia EL, Pereira AH, Menezes MG, et al. Effects of aerobic and combined training on pain-free walking distance and health-related quality of life in patients with peripheral artery disease: a randomized clinical trial. J Vasc Bras. 2023;22:e20230024. doi: 10.1590/1677-5449.202300242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.GraphPad GraphPad. 2024. [citado 2024 abr 7]. site na Internet. https://www.graphpad.com/quickcalcs/randomize1 .
  • 10.Research Randomizer Research Randomizer. 2024. [citado 2024 abr 7]. site na Internet. https://www.randomizer.org/
  • 11.Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(1):c869. doi: 10.1136/bmj.c869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ference BA, Holmes MV, Smith GD. Using Mendelian randomization to improve the design of randomized trials. Cold Spring Harb Perspect Med. 2021;11(7):a040980. doi: 10.1101/cshperspect.a040980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98. doi: 10.1093/hmg/ddu328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kang M, Ragan BG, Park JH. Issues in outcomes research: an overview of randomization techniques for clinical trials. J Athl Train. 2008;43(2):215–221. doi: 10.4085/1062-6050-43.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics. 1975;31(1):103–115. doi: 10.2307/2529712. [DOI] [PubMed] [Google Scholar]
  • 16.Taves DR. Minimization: a new method of assigning patients to treatment and control groups. Clin Pharmacol Ther. 1974;15(5):443–453. doi: 10.1002/cpt1974155443. [DOI] [PubMed] [Google Scholar]
  • 17.Treasure T, MacRae KD. Minimisation: the platinum standard for trials? Randomisation doesn’t guarantee similarity of groups; minimisation does. BMJ. 1998;317(7155):362–363. doi: 10.1136/bmj.317.7155.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Schulz KF, Grimes DA. Generation of allocation sequences in randomised trials: chance, not choice. Lancet. 2002;359(9305):515–519. doi: 10.1016/S0140-6736(02)07683-3. [DOI] [PubMed] [Google Scholar]
  • 19.Purssell E, Drey N, Chudleigh J, Creedon S, Gould DJ. The Hawthorne effect on adherence to hand hygiene in patient care. J Hosp Infect. 2020;106(2):311–317. doi: 10.1016/j.jhin.2020.07.028. [DOI] [PubMed] [Google Scholar]
  • 20.Chalmers TC, Celano P, Sacks HS, Smith H., Jr Bias in treatment assignment in controlled clinical trials. N Engl J Med. 1983;309(22):1358–1361. doi: 10.1056/NEJM198312013092204. [DOI] [PubMed] [Google Scholar]
  • 21.Forder PM, Gebski VJ, Keech AC. Allocation concealment and blinding: when ignorance is bliss. Med J Aust. 2005;182(2):87–89. doi: 10.5694/j.1326-5377.2005.tb06584.x. [DOI] [PubMed] [Google Scholar]
  • 22.Berger VW, Do AC. Allocation concealment continues to be misunderstood. J Clin Epidemiol. 2010;63(4):468–469. doi: 10.1016/j.jclinepi.2009.09.004. [DOI] [PubMed] [Google Scholar]
  • 23.Pildal J, Chan AW, Hrobjartsson A, Forfang E, Altman DG, Gotzsche PC. Comparison of descriptions of allocation concealment in trial protocols and the published reports: cohort study. BMJ. 2005;330(7499):1049. doi: 10.1136/bmj.38414.422650.8F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Schulz KF, Grimes DA. Allocation concealment in randomised trials: defending against deciphering. Lancet. 2002;359(9306):614–618. doi: 10.1016/S0140-6736(02)07750-4. [DOI] [PubMed] [Google Scholar]
  • 25.Kennedy CE, Fonner VA, Armstrong KA, et al. The Evidence Project risk of bias tool: assessing study rigor for both randomized and non-randomized intervention studies. Syst Rev. 2019;8(1):3. doi: 10.1186/s13643-018-0925-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Deeks JJ, Dinnes J, D’Amico R, et al. Evaluating non-randomised intervention studies. Health Technol Assess. 2003;7(27):iii–x. doi: 10.3310/hta7270. [DOI] [PubMed] [Google Scholar]
  • 27.Popp L, Schneider S. Attention placebo control in randomized controlled trials of psychosocial interventions: theory and practice. Trials. 2015;16(1):150. doi: 10.1186/s13063-015-0679-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Linde K, Fassler M, Meissner K. Placebo interventions, placebo effects and clinical practice. Philos Trans R Soc Lond B Biol Sci. 2011;366(1572):1905–1912. doi: 10.1098/rstb.2010.0383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Fregni F, Imamura M, Chien HF, et al. Challenges and recommendations for placebo controls in randomized trials in physical and rehabilitation medicine: a report of the international placebo symposium working group. Am J Phys Med Rehabil. 2010;89(2):160–172. doi: 10.1097/PHM.0b013e3181bc0bbd. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Homer CS. Using the Zelen design in randomized controlled trials: debates and controversies. J Adv Nurs. 2002;38(2):200–207. doi: 10.1046/j.1365-2648.2002.02164.x. [DOI] [PubMed] [Google Scholar]
  • 31.Simon GE, Shortreed SM, DeBar LL. Zelen design clinical trials: why, when, and how. Trials. 2021;22(1):541. doi: 10.1186/s13063-021-05517-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Torgerson DJ, Roland M. Understanding controlled trials: What is Zelen’s design? BMJ. 1998;316(7131):606. doi: 10.1136/bmj.316.7131.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Lai D, Wang D, McGillivray M, Baajour S, Raja AS, He S. Assessing the quality of randomization methods in randomized control trials. Healthc (Amst) 2021;9(4):100570. doi: 10.1016/j.hjdsi.2021.100570. [DOI] [PubMed] [Google Scholar]
J Vasc Bras. 2025 Jan 13;23:e20240046. [Article in Portuguese] doi: 10.1590/1677-5449.202400461

Técnicas de randomização e alocação para estudos clínicos

Anna Carolina Miola 1, Ana Cláudia Cavalcante Espósito 2, Hélio Amante Miot 1

Resumo

Estudos de intervenção requerem que todos os participantes sejam provenientes da mesma população, com alocação aleatória aos grupos de intervenção (GI) para garantir comparabilidade. A randomização é fundamental para minimizar fatores de confusão, permitindo que diferenças nos resultados sejam atribuídas à intervenção. A randomização simples é eficaz para amostras grandes (>100 por grupo), mas amostras menores podem exigir randomização em blocos ou estratificada para equilibrar os tamanhos dos grupos e as covariáveis. Quando a randomização não é viável, métodos quasi-randomizados (como baseados em datas ou ordem de inclusão) podem ser utilizados, mas devem ser acompanhados de ajustes multivariados. Além disso, o cegamento e a ocultação da alocação aumentam a validade interna e a reprodutibilidade. A ocultação da alocação (ex.: envelopes lacrados) evita vieses durante a designação dos participantes, enquanto o cegamento reduz vieses de detecção e desempenho. Descrições metodológicas detalhadas em registros de ensaios clínicos e publicações aumentam a confiabilidade e a reprodutibilidade dos estudos, destacando a importância de um planejamento rigoroso e de relatórios transparentes em pesquisas de intervenção. Este artigo revisa os principais conceitos de randomização, cegamento e ocultação de alocação em estudos de intervenção.

Palavras-chave: Randomização, Ocultação de Alocação, Estudos de Intervenção, Redução de Viés, Validade Metodológica


A análise quantitativa de dados oriundos de estudos de intervenção demanda que a amostra seja proveniente da mesma população (em cada centro) e que a alocação nos grupos seja realizada de forma aleatória, isto é, sem interferência do pesquisador ou dos participantes. Isso garante que cada indivíduo tenha a mesma chance de ser designado para qualquer um dos grupos de intervenção (GIs)1-4 .

A importância da alocação randomizada (aleatória) reside na capacidade de homogeneizar fatores de confusão desconhecidos ou não mensuráveis, distribuindo-os aleatoriamente entre os grupos. Isso ajuda a criar GI comparáveis em termos de características basais, tornando mais confiável a atribuição de quaisquer diferenças nos resultados à intervenção propriamente dita. Nesse sentido, além de critérios rigorosos de inclusão, o uso de técnicas de randomização, cegamento e alocação é imperativo para reduzir vieses de seleção e aumentar a validade interna do experimento, maximizando a confiabilidade e reprodutibilidade dos resultados1,3,5 . Alguns exemplos e características dos principais tipos de randomização estão descritos nos Quadros 1 e 2.

Quadro 1. Exemplos de randomização de 32 participantes para dois grupos de intervenção (A e B).

Tipo de randomização Intervenção Sequência de alocação dos participantes
Simples A 1, 2, 4, 8, 9, 10, 15, 17, 21, 25, 26, 27, 28, 32
B 3, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 29, 30, 31
Em blocos A 1, 3, 6, 8, 9, 12, 14, 16, 17, 20, 21, 24, 26, 28, 29, 31
B 2, 4, 5, 7, 10, 11, 13, 15, 18, 19, 22, 23, 25, 27, 30, 32
Estratificada A Estrato X: 1, 3, 6, 8, 9, 12, 14, 16 Estrato Y: 17, 20, 21, 24, 26, 28, 29, 31
B Estrato X: 2, 4, 5, 7, 10, 11, 13, 15 Estrato Y: 18, 19, 22, 23, 25, 27, 30, 32
Pareada A Var W: 1, 3, 6, 8, Var X: 9, 12, 14, 16 Var Y: 17, 20, 21, 24, Var Z: 26, 28, 29, 31
B Var W: 2, 4, 5, 7, Var X: 10, 11, 13, 15 Var Y: 18, 19, 22, 23, Var Z: 25, 27, 30, 32
Adaptativa por minimização A 1, 2, 4....depende das características dos primeiros incluídos para pareamento de características.
B 3, 5, 6
Mendeliana A 1, 2, 4....depende das características dos primeiros incluídos para pareamento genético.
B 3, 5, 6

Quadro 2. Vantagens e desvantagens dos principais métodos de randomização em estudos clínicos.

Método de randomização Vantagens Desvantagens
Simples Fácil de ser reproduzida. Pode haver desbalanço entre os grupos em amostras pequenas.
Em blocos Reduz o desbalanço entre os grupos. Sequência de alocação pode ser inferida pelo pesquisador em ensaios abertos.
Estratificada em blocos Distribui um possível fator preditor do desfecho de forma igualitária entre os grupos. No caso de muitos estratos, gera grupos muito pequenos, o que compromete o poder da análise estatística.
Pareada Reduz o desbalanço entre os grupos. Dificulta a inclusão de pacientes, que deve ser simultânea.
Permite que participantes com os mesmos fatores preditivos sejam comparados.
Adaptativa por minimização Permite que a homogeneização entre os grupos ocorra simultaneamente ao desenvolvimento do estudo. Exige monitorização contínua por software.
Mendeliana Permite a distribuição de um fator constitucional de forma homogênea entre os grupos. Pode sofrer influência de outros fatores de exposição com outras variáveis não consideradas (heterogeneidade genética, epigenética, interação entre genes).

Por se assemelhar a um simples sorteio, a randomização simples é, tecnicamente, melhor compreensível e implementável. No entanto, pode gerar GIs com tamanhos desproporcionais, além de provocar desequilíbrio na proporção de covariáveis de interesse quando se utilizam amostras pequenas (n < 100). No estudo de Coelho et al.6 , 52 pacientes foram randomizados para receber terapia compressiva elástica por 7 dias ou uso de meia elástica por 24 horas após flebectomia. Houve homogeneidade adequada das covariáveis demográficas, apesar do desequilíbrio numérico entre os GIs (n = 20 x 32 participantes).

A randomização em blocos garante que os sorteios sejam distribuídos igualmente dentro dos GIs, evitando desproporções numéricas entre as intervenções e permitindo certo paralelismo nas inclusões. Contudo, em amostras pequenas, também há o risco de desequilíbrio entre covariáveis relevantes dentro dos GIs. Ainda, em ensaios abertos, quando os blocos são pequenos, é possível que o pesquisador antecipe a intervenção sorteada para o próximo participante a ser incluído no bloco, causando viés de seleção7 . No estudo de Garcia et al.8 , 20 participantes foram randomizados em blocos para dois GIs, a fim de avaliar dois programas de treinamento para pacientes com claudicação intermitente. Apesar do equilíbrio nos tamanhos dos GIs, a amostra restrita não permitiu uma homogeneização adequada das covariáveis demográficas, como o sexo.

Para minimizar o risco de que uma covariável relevante para o desfecho do estudo esteja desequilibrada entre os GIs e permitir a realização de análise estratificada dos resultados a posteriori, deve-se utilizar a randomização estratificada em blocos, que, na prática, cria estratos menores com blocos de inclusão para indivíduos com ou sem as covariáveis de interesse7 . Um exemplo seria a estratificação de pacientes com diabetes melito ou tabagistas em ensaios terapêuticos de aterosclerose.

Sequências de alocação aleatorizadas em blocos, com ou sem estratificação, podem ser geradas online em sites como GraphPad9 e Research Randomizer10 .

Entretanto, mesmo com a estratificação dos blocos, a utilização de amostras pequenas ainda pode causar homogeneização inadequada de potenciais confundidores, como idade, sexo ou etnia, dentro dos GIs. Essas desproporções devem ser ponderadas na análise dos resultados por meio de ajustes multivariados. Técnicas de randomização pareada são utilizadas para criar, a priori, mais estratos ou cotas para a inclusão dos participantes. Entretanto, o balanceamento entre os grupos por pareamento pode dificultar o recrutamento de participantes e gerar atrasos no estudo, visto que os participantes pareados devem, preferencialmente, iniciar as intervenções de forma paralela7 .

Para não atrasar a inclusão, a randomização adaptativa por minimização visa equilibrar os GIs quanto a possíveis fatores confundidores, o que ocorre de forma dinâmica durante a fase de inclusão. Após uma randomização simples inicial e a alocação de alguns indivíduos, as características basais dos grupos são analisadas, e um novo cálculo é realizado para garantir o pareamento e a estratificação equilibrada dos novos participantes recrutados. Esse método exige o uso de software para monitoramento contínuo durante toda a fase de inclusão11 .

Na randomização mendeliana, variantes genéticas associadas à exposição de interesse são utilizadas como parâmetro de pareamento e estratificação, demandando um conhecimento prévio do estado genético dos indivíduos elegíveis para o estudo dentro de uma população de interesse12,13 .

De forma geral, a randomização simples pode ser empregada quando o tamanho amostral for maior que 100 participantes por grupo. Quando menor, a randomização em blocos garante um melhor equilíbrio no tamanho dos grupos. Entretanto, se houver a necessidade de análise posterior por subgrupos (por exemplo, gravidade da doença, faixa etária, gênero, composição corporal, tratamentos prévios, comorbidades), a randomização estratificada pelas variáveis de interesse deve ser preferida14 . Formas mais elaboradas, como a randomização mendeliana, fatorial, por conglomerados, estratégias adaptativas e de minimização, devem ser apoiadas por profissional estatístico experiente e suporte computacional adequado15-17 .

Os pesquisadores devem utilizar todos os recursos disponíveis para garantir a aleatoriedade na inclusão dos participantes nos GIs. Entretanto, há situações em que a randomização não é totalmente possível. Nesses casos, entre os métodos de alocação não randomizados, destaca-se o sequencial (por conveniência), no qual os participantes são alocados com base em uma ordem definida no momento da inclusão. Para minimizar o ônus da falta de randomização, podem-se utilizar alocações quasi-randomizadas, nas quais se usa um critério variável, mas não randomizado, de definição do GI, como número de registro no protocolo do estudo (final par ou ímpar), data de nascimento, ordem de recrutamento no ensaio clínico ou dia da semana. Ainda, em estudos retrospectivos que comparam intervenções (por exemplo, coortes terapêuticas) e outros desenhos que utilizam alocação não randomizada, a condução de análises de sensibilidade e o ajuste multivariado para as covariáveis de confusão são essenciais na ratificação dos resultados.

Todo o processo de randomização visa orientar a alocação dos participantes nos GIs de forma homogênea, de acordo com as características da pesquisa18 . É também importante que o processo de alocação seja protegido da influência, intencional ou não, dos membros pesquisadores do estudo, a fim de minimizar vieses de inclusão e de detecção. Ainda, é valioso que a alocação seja feita de forma que o pesquisador não possa predizer a sequência das intervenções, o que poderia enviesar a seleção de pacientes mais ou menos favoráveis à intervenção19,20 .

Ocultação de alocação é o termo usado para descrever o processo de randomização em que o tratamento a ser alocado não é conhecido antes da inclusão do participante no estudo21,22 . Isso pode ser realizado por meio de envelopes opacos e lacrados, enumerados e organizados previamente por um indivíduo externo à equipe do estudo23,24 .

O cegamento, por sua vez, refere-se ao mascaramento dos indivíduos envolvidos no estudo quanto às intervenções após a alocação dos participantes. Pode ser aplicado apenas ao participante (cego), ao participante em combinação com o investigador ou avaliador dos resultados (duplo-cego, avaliador-cego) ou a todos os envolvidos (triplo-cego)21 . Contudo, nem sempre é possível cegar toda a cadeia de pesquisa (participantes, investigadores e avaliadores) na execução do estudo e na análise dos resultados, especialmente em ensaios cirúrgicos. Além do viés de seleção, o viés de detecção (dos desfechos) e viés de performance (das intervenções) devem ser considerados nesses casos25,26 . A equipe de pesquisa deve se esmerar para que ao menos um avaliador externo seja cegado quanto aos GIs e que os desfechos avaliados sejam os mais objetivos possíveis.

Há, ainda, situações excepcionais que podem dificultar a alocação randomizada, já que o consentimento para a randomização pode ser difícil de ser obtido quando o paciente tem uma noção preconcebida sobre as intervenções envolvidas ou quando o estudo envolve placebo26-29 . Por questões éticas, o participante pode ter o direito de concordar ou não com a alocação no GI ao qual foi randomizado. Ensaios com desenhos especiais (por exemplo, desenho de Zelen, dupla randomização, crossover) foram desenvolvidos para contornar tais contingências e contemplam a realocação dos participantes após sua randomização inicial, mas sua discussão ultrapassa o escopo deste texto30-32 .

Por fim, embora estudos de intervenção sejam beneficiados por técnicas de randomização, cegamento e alocação que reduzam vieses de seleção e detecção, é necessária uma descrição minuciosa da metodologia utilizada, uma vez que isso afeta diretamente a validade interna dos resultados. A descrição metodológica, seja no registro dos ensaios clínicos ou na elaboração de materiais suplementares aos artigos, favorece a reprodutibilidade do estudo e deve ser incentivada, ainda que apenas uma fração pequena de ensaios clínicos apresente tal detalhamento33 .

Biographies

Professora Assistente, Departamento de Dermatologia e Radioterapia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP).

Professora, Universidade do Oeste Paulista (Unoeste).

Professor Titular, Departamento de Dermatologia e Radioterapia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP).

Footnotes

Como citar: Miola AC, Espósito ACC, Miot HA. Técnicas de randomização e alocação para estudos clínicos. J Vasc Bras. 2024;23:e20240046. https://doi.org/10.1590/1677-5449.202400461

Fonte de financiamento: Nenhuma.

O estudo foi realizado no Departamento de Dermatologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil.


Articles from Jornal Vascular Brasileiro are provided here courtesy of Sociedade Brasileira de Angiologia e Cirurgia Vascular

RESOURCES