Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Feb;447:293–308. doi: 10.1113/jphysiol.1992.sp019003

Substance P inhibits activation of calcium-dependent potassium conductances in guinea-pig myenteric neurones.

K Morita 1, Y Katayama 1
PMCID: PMC1176037  PMID: 1375630

Abstract

1. Intracellular recordings were made from myenteric AH neurones of the guinea-pig ileum in vitro. Some experiments were done with a single-electrode voltage clamp to measure membrane currents. 2. Substance P (SP) applied by superfusion (10 nM-300 nM), pressure ejection (100 nM-10 microM, 760 mmHg, for 10-20 ms) or ionophoresis (1 mM, 100 nA, for 0.2 s) caused a membrane depolarization and an inward current, associated with a decrease in potassium conductance. 3. The SP-induced depolarization was abolished within 15 min by superfusion with calcium-free/high-magnesium (10 mM) solution or solutions containing cobalt, manganese or nickel at 1-3 mM. The response persisted even after 40-60 min of superfusion with calcium-free/normal-magnesium (1.2 mM) solution. In all these solutions, synaptic potentials were abolished within 5 min. 4. SP inhibited a slowly developing outward current and an outward tail current during and after a long depolarizing command pulse (2-10 s), and an outward after-current following single or multiple brief depolarizing command pulses (10-50 ms). These outward currents were suppressed in calcium-free/high-magnesium solution. 5. SP depressed both a calcium-dependent slow after-hyperpolarization following the action potential and an outward after-current preceded by a brief depolarizing command. Both the SP-induced depolarization and the SP-induced inward current were augmented when the peptide was pressure-ejected during the recovery phase of the slow after-hyperpolarization and during that of the slow outward after-current, but both of them were inhibited or almost abolished when SP was applied immediately after spike initiation or a brief depolarizing command. 6. The SP-induced response was depressed by barium (1-2 mM). The SP response was not inhibited by tetraethylammonium at low concentrations (5-10 mM), but was depressed at high concentration (20 mM). 7. Superfusion (1-10 nM) or pressure application of a calcium ionophore, A23187, inhibited or even reversed the SP depolarization and the SP-induced inward current. 8. These results indicate that SP inhibits activation of a calcium-dependent potassium conductance which contributes to both the slow after-hyperpolarization and the resting membrane potential. SP may affect the process by which calcium activates this potassium conductance.

Full text

PDF
293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasu T., Tokimasa T. Potassium currents in submucous neurones of guinea-pig caecum and their synaptic modification. J Physiol. 1989 Sep;416:571–588. doi: 10.1113/jphysiol.1989.sp017778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eaton D. C., Brodwick M. S. Effects of barium on the potassium conductance of squid axon. J Gen Physiol. 1980 Jun;75(6):727–750. doi: 10.1085/jgp.75.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grafe P., Mayer C. J., Wood J. D. Synaptic modulation of calcium-dependent potassium conductance in myenteric neurones in the guinea-pig. J Physiol. 1980 Aug;305:235–248. doi: 10.1113/jphysiol.1980.sp013360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Higashi H., Katayama Y., Morita K., North R. A. Ouabain augments calcium-dependent potassium conductance in visceral primary afferent neurones of the rabbit. J Physiol. 1987 Aug;389:629–645. doi: 10.1113/jphysiol.1987.sp016675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hirst G. D., Holman M. E., Spence I. Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J Physiol. 1974 Jan;236(2):303–326. doi: 10.1113/jphysiol.1974.sp010436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hirst G. D., Johnson S. M., van Helden D. F. The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. J Physiol. 1985 Apr;361:315–337. doi: 10.1113/jphysiol.1985.sp015648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirst G. D., Spence I. Calcium action potentials in mammalian peripheral neurones. Nat New Biol. 1973 May 9;243(123):54–56. [PubMed] [Google Scholar]
  8. Johnson S. M., Katayama Y., Morita K., North R. A. Mediators of slow synaptic potentials in the myenteric plexus of the guinea-pig ileum. J Physiol. 1981 Nov;320:175–186. doi: 10.1113/jphysiol.1981.sp013942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Katayama Y., Morita K. Adenosine 5'-triphosphate modulates membrane potassium conductance in guinea-pig myenteric neurones. J Physiol. 1989 Jan;408:373–390. doi: 10.1113/jphysiol.1989.sp017464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katayama Y., North R. A. Does substance P mediate slow synaptic excitation within the myenteric plexus? Nature. 1978 Jul 27;274(5669):387–388. doi: 10.1038/274387a0. [DOI] [PubMed] [Google Scholar]
  11. Katayama Y., North R. A., Williams J. T. The action of substance P on neurons of the myenteric plexus of the guinea-pig small intestine. Proc R Soc Lond B Biol Sci. 1979 Nov 30;206(1163):191–208. doi: 10.1098/rspb.1979.0101. [DOI] [PubMed] [Google Scholar]
  12. Mihara S., Katayama Y., Nishi S. Slow postsynaptic potentials in neurones of submucous plexus of guinea-pig caecum and their mimicry by noradrenaline and various peptides. Neuroscience. 1985 Dec;16(4):1057–1068. doi: 10.1016/0306-4522(85)90116-2. [DOI] [PubMed] [Google Scholar]
  13. Morita K., Katayama Y. Calcium-dependent slow outward current in visceral primary afferent neurones of the rabbit. Pflugers Arch. 1989 Jun;414(2):171–177. doi: 10.1007/BF00580960. [DOI] [PubMed] [Google Scholar]
  14. Morita K., North R. A., Katayama Y. Evidence that substance P is a neurotransmitter in the myenteric plexus. Nature. 1980 Sep 11;287(5778):151–152. doi: 10.1038/287151a0. [DOI] [PubMed] [Google Scholar]
  15. Morita K., North R. A. Significance of slow synaptic potentials for transmission of excitation in guinea-pig myenteric plexus. Neuroscience. 1985 Feb;14(2):661–672. doi: 10.1016/0306-4522(85)90317-3. [DOI] [PubMed] [Google Scholar]
  16. Morita K., North R. A., Tokimasa T. The calcium-activated potassium conductance in guinea-pig myenteric neurones. J Physiol. 1982 Aug;329:341–354. doi: 10.1113/jphysiol.1982.sp014306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nemeth P. R., Palmer J. M., Wood J. D., Zafirov D. H. Effects of forskolin on electrical behaviour of myenteric neurones in guinea-pig small intestine. J Physiol. 1986 Jul;376:439–450. doi: 10.1113/jphysiol.1986.sp016162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishi S., North R. A. Intracellular recording from the myenteric plexus of the guinea-pig ileum. J Physiol. 1973 Jun;231(3):471–491. doi: 10.1113/jphysiol.1973.sp010244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. North R. A. Electrophysiology of the enteric nervous system. Neuroscience. 1982 Feb;7(2):315–325. doi: 10.1016/0306-4522(82)90269-x. [DOI] [PubMed] [Google Scholar]
  20. North R. A. The calcium-dependent slow after-hyperpolarization in myenteric plexus neurones with tetrodotoxin-resistant action potentials. Br J Pharmacol. 1973 Dec;49(4):709–711. doi: 10.1111/j.1476-5381.1973.tb08550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. North R. A., Tokimasa T. Persistent calcium-sensitive potassium current and the resting properties of guinea-pig myenteric neurones. J Physiol. 1987 May;386:333–353. doi: 10.1113/jphysiol.1987.sp016537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Palmer J. M., Wood J. D., Zafirov D. H. Elevation of adenosine 3',5'-phosphate mimics slow synaptic excitation in myenteric neurones of the guinea-pig. J Physiol. 1986 Jul;376:451–460. doi: 10.1113/jphysiol.1986.sp016163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Surprenant A. Slow excitatory synaptic potentials recorded from neurones of guinea-pig submucous plexus. J Physiol. 1984 Jun;351:343–361. doi: 10.1113/jphysiol.1984.sp015249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tatsumi H., Hirai K., Katayama Y. Measurement of the intracellular calcium concentration in guinea-pig myenteric neurons by using fura-2. Brain Res. 1988 Jun 7;451(1-2):371–375. doi: 10.1016/0006-8993(88)90787-1. [DOI] [PubMed] [Google Scholar]
  25. Wood J. D. Enteric neurophysiology. Am J Physiol. 1984 Dec;247(6 Pt 1):G585–G598. doi: 10.1152/ajpgi.1984.247.6.G585. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES