Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Mar;448:121–132. doi: 10.1113/jphysiol.1992.sp019032

Mechanisms of intrinsic tone in ferret vascular smooth muscle.

J Pawlowski 1, K G Morgan 1
PMCID: PMC1176190  PMID: 1593466

Abstract

1. Circular strips from ferret aorta were used to investigate the mechanism of the intrinsic basal tone. 2. Determinations of stiffness using small sinusoidal length changes showed an abolition of both stiffness and force with cooling, but the temperature dependence of the change in active stiffness did not parallel that of force. At temperatures below 22 degrees C there appeared to be a relatively large population of attached, non-force-generating cross-bridges, indicating that separate mechanisms are involved in regulating cross-bridge attachment and the force per cross-bridge. 3. Active intrinsic tone was not affected by removal of extracellular Ca2+ or removal of endothelium. 4. Intracellular ionized Ca2+ concentrations ([Ca2+]i) as measured with the photoprotein aequorin, did not significantly change when intrinsic tone was abolished by cooling. 5. Myosin light chain phosphorylation, as measured by 2-dimensional polyacrylamide gel electrophoresis, significantly decreased on cooling, but the temperature dependence of phosphorylation did not parallel that of force. The change in phosphorylation in the absence of a change in [Ca2+]i suggests the presence of a constitutively active Ca(2+)-independent form of myosin light chain kinase. 6. Maximal concentrations of staurosporine inhibited but did not eliminate intrinsic tone. 7. Changes in myosin light chain kinase and protein kinase C activities may explain part but not all of the intrinsic tone.

Full text

PDF
121

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Blinks J. R. Calcium transients in aequorin-injected frog cardiac muscle. Nature. 1978 Jun 15;273(5663):509–513. doi: 10.1038/273509a0. [DOI] [PubMed] [Google Scholar]
  2. Arnaud M. J. The pharmacology of caffeine. Prog Drug Res. 1987;31:273–313. doi: 10.1007/978-3-0348-9289-6_9. [DOI] [PubMed] [Google Scholar]
  3. Bayliss W. M. On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 1902 May 28;28(3):220–231. doi: 10.1113/jphysiol.1902.sp000911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
  5. Brenner B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci U S A. 1988 May;85(9):3265–3269. doi: 10.1073/pnas.85.9.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brozovich F. V., Morgan K. G. Stimulus-specific changes in mechanical properties of vascular smooth muscle. Am J Physiol. 1989 Nov;257(5 Pt 2):H1573–H1580. doi: 10.1152/ajpheart.1989.257.5.H1573. [DOI] [PubMed] [Google Scholar]
  7. Brozovich F. V., Yates L. D., Gordon A. M. Muscle force and stiffness during activation and relaxation. Implications for the actomyosin ATPase. J Gen Physiol. 1988 Mar;91(3):399–420. doi: 10.1085/jgp.91.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butler T. M., Pacifico D. S., Siegman M. J. ADP release from myosin in permeabilized smooth muscle. Am J Physiol. 1989 Jan;256(1 Pt 1):C59–C66. doi: 10.1152/ajpcell.1989.256.1.C59. [DOI] [PubMed] [Google Scholar]
  9. DeFeo T. T., Morgan K. G. Calcium-force relationships as detected with aequorin in two different vascular smooth muscles of the ferret. J Physiol. 1985 Dec;369:269–282. doi: 10.1113/jphysiol.1985.sp015900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hastings J. W., Mitchell G., Mattingly P. H., Blinks J. R., Van Leeuwen M. Response of aequorin bioluminescence to rapid changes in calcium concentration. Nature. 1969 Jun 14;222(5198):1047–1050. doi: 10.1038/2221047a0. [DOI] [PubMed] [Google Scholar]
  11. Ikebe M., Stepinska M., Kemp B. E., Means A. R., Hartshorne D. J. Proteolysis of smooth muscle myosin light chain kinase. Formation of inactive and calmodulin-independent fragments. J Biol Chem. 1987 Oct 5;262(28):13828–13834. [PubMed] [Google Scholar]
  12. Jiang M. J., Morgan K. G. Agonist-specific myosin phosphorylation and intracellular calcium during isometric contractions of arterial smooth muscle. Pflugers Arch. 1989 Apr;413(6):637–643. doi: 10.1007/BF00581814. [DOI] [PubMed] [Google Scholar]
  13. Jiang M. J., Morgan K. G. Intracellular calcium levels in phorbol ester-induced contractions of vascular muscle. Am J Physiol. 1987 Dec;253(6 Pt 2):H1365–H1371. doi: 10.1152/ajpheart.1987.253.6.H1365. [DOI] [PubMed] [Google Scholar]
  14. Kamm K. E., Stull J. T. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol. 1989;51:299–313. doi: 10.1146/annurev.ph.51.030189.001503. [DOI] [PubMed] [Google Scholar]
  15. Klemt P., Peiper U. The dynamics of cross-bridge movement in vascular smooth muscle estimated from a single isometric contraction of the portal vein: the influence of temperature and calcium. Pflugers Arch. 1978 Dec 15;378(1):31–36. doi: 10.1007/BF00581955. [DOI] [PubMed] [Google Scholar]
  16. Kühn H., Tewes A., Gagelmann M., Güth K., Arner A., Rüegg J. C. Temporal relationship between force, ATPase activity, and myosin phosphorylation during a contraction/relaxation cycle in a skinned smooth muscle. Pflugers Arch. 1990 Jul;416(5):512–518. doi: 10.1007/BF00382683. [DOI] [PubMed] [Google Scholar]
  17. Laher I., Bevan J. A. Protein kinase C activation selectively augments a stretch-induced, calcium-dependent tone in vascular smooth muscle. J Pharmacol Exp Ther. 1987 Aug;242(2):566–572. [PubMed] [Google Scholar]
  18. Leijten P. A., van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984 Dec;357:327–339. doi: 10.1113/jphysiol.1984.sp015502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MacKinnon R., Morgan J. P. Influence of the thyroid state on the calcium transient in ventricular muscle. Pflugers Arch. 1986 Aug;407(2):142–144. doi: 10.1007/BF00580665. [DOI] [PubMed] [Google Scholar]
  20. Marston S. B., Lehman W. Caldesmon is a Ca2+-regulatory component of native smooth-muscle thin filaments. Biochem J. 1985 Nov 1;231(3):517–522. doi: 10.1042/bj2310517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morgan J. P., Morgan K. G. Vascular smooth muscle: the first recorded Ca2+ transients. Pflugers Arch. 1982 Oct;395(1):75–77. doi: 10.1007/BF00584972. [DOI] [PubMed] [Google Scholar]
  22. Mrwa U., Hartshorne D. J. Phosphorylation of smooth muscle myosin and myosin light chains. Fed Proc. 1980 Apr;39(5):1564–1568. [PubMed] [Google Scholar]
  23. Naka M., Kureishi Y., Muroga Y., Takahashi K., Ito M., Tanaka T. Modulation of smooth muscle calponin by protein kinase C and calmodulin. Biochem Biophys Res Commun. 1990 Sep 28;171(3):933–937. doi: 10.1016/0006-291x(90)90773-g. [DOI] [PubMed] [Google Scholar]
  24. Papageorgiou P., Morgan K. G. Intracellular free Ca2+ is elevated in hypertrophic aortic muscle from hypertensive rats. Am J Physiol. 1991 Feb;260(2 Pt 2):H507–H515. doi: 10.1152/ajpheart.1991.260.2.H507. [DOI] [PubMed] [Google Scholar]
  25. Parker P. J., Kour G., Marais R. M., Mitchell F., Pears C., Schaap D., Stabel S., Webster C. Protein kinase C--a family affair. Mol Cell Endocrinol. 1989 Aug;65(1-2):1–11. doi: 10.1016/0303-7207(89)90159-7. [DOI] [PubMed] [Google Scholar]
  26. Rasmussen H., Takuwa Y., Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB J. 1987 Sep;1(3):177–185. [PubMed] [Google Scholar]
  27. Ruzycky A. L., Morgan K. G. Involvement of the protein kinase C system in calcium-force relationships in ferret aorta. Br J Pharmacol. 1989 Jun;97(2):391–400. doi: 10.1111/j.1476-5381.1989.tb11966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rüegg J. C. Smooth muscle tone. Physiol Rev. 1971 Jan;51(1):201–248. doi: 10.1152/physrev.1971.51.1.201. [DOI] [PubMed] [Google Scholar]
  29. Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
  30. Siegman M. J., Butler T. M., Mooers S. U., Davies R. E. Crossbridge attachment, resistance to stretch, and viscoelasticity in resting mammalian smooth muscle. Science. 1976 Jan 30;191(4225):383–385. doi: 10.1126/science.128819. [DOI] [PubMed] [Google Scholar]
  31. Suematsu E., Resnick M., Morgan K. G. Ca(2+)-independent change in phosphorylation of the myosin light chain during relaxation of ferret aorta by vasodilators. J Physiol. 1991;440:85–93. doi: 10.1113/jphysiol.1991.sp018697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tansey M. G., Hori M., Karaki H., Kamm K. E., Stull J. T. Okadaic acid uncouples myosin light chain phosphorylation and tension in smooth muscle. FEBS Lett. 1990 Sep 17;270(1-2):219–221. doi: 10.1016/0014-5793(90)81272-p. [DOI] [PubMed] [Google Scholar]
  33. Walsh M. P., Dabrowska R., Hinkins S., Hartshorne D. J. Calcium-independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestion of the calcium ion dependent enzyme, purification, and characterization. Biochemistry. 1982 Apr 13;21(8):1919–1925. doi: 10.1021/bi00537a034. [DOI] [PubMed] [Google Scholar]
  34. Winder S. J., Walsh M. P. Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem. 1990 Jun 15;265(17):10148–10155. [PubMed] [Google Scholar]
  35. Winton F. R. Tonus in mammalian unstriated muscle: I. J Physiol. 1930 Jun 27;69(4):393–410. doi: 10.1113/jphysiol.1930.sp002659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yamakawa M., Harris D. E., Fay F. S., Warshaw D. M. Mechanical transients of single toad stomach smooth muscle cells. Effects of lowering temperature and extracellular calcium. J Gen Physiol. 1990 Apr;95(4):697–715. doi: 10.1085/jgp.95.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES