Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Mar;448:355–382. doi: 10.1113/jphysiol.1992.sp019046

Characterization of large-conductance chloride channels in rabbit colonic smooth muscle.

X P Sun 1, S Supplisson 1, R Torres 1, G Sachs 1, E Mayer 1
PMCID: PMC1176204  PMID: 1375640

Abstract

1. A large-conductance Cl- channel was characterized in cell-free membrane patches from the rabbit longitudinal colonic smooth muscle using the patch clamp technique. In addition, the regulation of these channels by neurokinin-1 (NK-1) receptor agonists and G proteins was studied. 2. No spontaneous channel activity was observed in cell-attached patches at the cell resting potential, or in excised patches at pipette potentials (Vp) between -20 and 20 mV. In excised patches, channel activity could be induced in thirty-six out of ninety-six patches by holding the patch at Vp values more negative than -60 mV or more positive than 60 mV. Once induced, the channel showed a bell-shaped voltage activation curve in high symmetric [Cl-], with maximal open probability between 20 and -5 mV. Varying cytosolic calcium concentration ([Ca2+]) between 5 x 10(-8) M and 1.0 mM had no effect on the voltage activation of the channel. 3. In inside-out and outside-out patches, when pipette and bath solutions contained equal [Cl-] (130 mM), the anion channel showed a linear current-voltage (I-V) relationship between -60 and 60 mV with a slope conductance of 309 +/- 20 pS (n = 13). Reversal potential measurements indicated that the channel was selective for Cl- over Na+ and K+ (PCl/PNa = 6:1). 4. Channel openings from the closed state to the full open state as well as transitions through smaller conductance states were observed. The smallest detectable substate had a conductance of 15.6 pS. Based on the similarities in selectivity and linearity of the I-V curve of the smaller conductances with the full open state, and kinetic analysis of channel activity, it is concluded that the large conductance channel is composed of multiple substates which can either open and close independently, or simultaneously via a main gate. 5. The stilbene derivative diiso-thiocyanato-stilbene-disulphonic acid (DIDS) and the diphenylamine-2-carboxylate analogue 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) caused a dose-dependent, reversible flicker block of the small conductance and significantly reduced the macroscopic current flow through the channel. 6. In quiescent outside-out patches, when the pipette contained a 140 mM-CsCl solution with 10(-6) M-CaCl2, 1.2 mM-MgCl2 and 1 mM-GTP, and the bath contained Ringer solution, addition of the NK-1 receptor antagonists substance P methylester resulted in activation of the full conductance state and of smaller substates.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
355

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin C. C., Brading A. F. Effect of Na+ and K+ on Cl- distribution in guinea-pig vas deferens smooth muscle: evidence for Na+, K+, Cl- co-transport. J Physiol. 1990 Feb;421:13–32. doi: 10.1113/jphysiol.1990.sp017931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aickin C. C., Vermuë N. A. Microelectrode measurement of intracellular chloride activity in smooth muscle cells of guinea-pig ureter. Pflugers Arch. 1983 Apr;397(1):25–28. doi: 10.1007/BF00585163. [DOI] [PubMed] [Google Scholar]
  3. Benham C. D., Bolton T. B., Lang R. J. Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature. 1985 Jul 25;316(6026):345–347. doi: 10.1038/316345a0. [DOI] [PubMed] [Google Scholar]
  4. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  5. Birnbaumer L., Abramowitz J., Brown A. M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. 1990 May 7;1031(2):163–224. doi: 10.1016/0304-4157(90)90007-y. [DOI] [PubMed] [Google Scholar]
  6. Blatz A. L., Magleby K. L. Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle. Biophys J. 1983 Aug;43(2):237–241. doi: 10.1016/S0006-3495(83)84344-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  8. Bormann J. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci. 1988 Mar;11(3):112–116. doi: 10.1016/0166-2236(88)90156-7. [DOI] [PubMed] [Google Scholar]
  9. Busath D., Szabo G. Low conductance gramicidin A channels are head-to-head dimers of beta 6.3-helices. Biophys J. 1988 May;53(5):689–695. doi: 10.1016/S0006-3495(88)83150-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Christensen O., Simon M., Randlev T. Anion channels in a leaky epithelium. A patch-clamp study of choroid plexus. Pflugers Arch. 1989 Oct;415(1):37–46. doi: 10.1007/BF00373139. [DOI] [PubMed] [Google Scholar]
  11. Coleman H. A., Parkington H. C. Single channel Cl- and K+ currents from cells of uterus not treated with enzymes. Pflugers Arch. 1987 Nov;410(4-5):560–562. doi: 10.1007/BF00586540. [DOI] [PubMed] [Google Scholar]
  12. El-Sharkawy T. Y. Electrical activities of the muscle layers of the canine colon. J Physiol. 1983 Sep;342:67–83. doi: 10.1113/jphysiol.1983.sp014840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franciolini F., Petris A. Chloride channels of biological membranes. Biochim Biophys Acta. 1990 May 7;1031(2):247–259. doi: 10.1016/0304-4157(90)90009-2. [DOI] [PubMed] [Google Scholar]
  14. Geletyuk V. I., Kazachenko V. N. Single Cl- channels in molluscan neurones: multiplicity of the conductance states. J Membr Biol. 1985;86(1):9–15. doi: 10.1007/BF01871605. [DOI] [PubMed] [Google Scholar]
  15. Golenhoffen K., von Loh D. Elektrophysiologische Untersuchungen zur normalen Spontanaktivität der isolierten Taenia coli des Meerschweinchens. Pflugers Arch. 1970;314(4):312–328. doi: 10.1007/BF00592289. [DOI] [PubMed] [Google Scholar]
  16. Gray P. T., Bevan S., Ritchie J. M. High conductance anion-selective channels in rat cultured Schwann cells. Proc R Soc Lond B Biol Sci. 1984 Jun 22;221(1225):395–409. doi: 10.1098/rspb.1984.0041. [DOI] [PubMed] [Google Scholar]
  17. Gögelein H. Chloride channels in epithelia. Biochim Biophys Acta. 1988 Oct 11;947(3):521–547. doi: 10.1016/0304-4157(88)90006-8. [DOI] [PubMed] [Google Scholar]
  18. Hals G. D., Palade P. T. Different sites control voltage dependence and conductance of sarcoball anion channel. Biophys J. 1990 May;57(5):1037–1047. doi: 10.1016/S0006-3495(90)82622-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hals G. D., Stein P. G., Palade P. T. Single channel characteristics of a high conductance anion channel in "sarcoballs". J Gen Physiol. 1989 Mar;93(3):385–410. doi: 10.1085/jgp.93.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hardie R. C. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature. 1989 Jun 29;339(6227):704–706. doi: 10.1038/339704a0. [DOI] [PubMed] [Google Scholar]
  21. Kaneko S., Doi E., Watanabe H., Nomura Y. A long-lasting potentiation of calmodulin-mediated chloride channel activity without a mediation of protein kinase C in Xenopus oocytes injected with rat brain mRNA. Cell Calcium. 1990 Apr;11(4):309–317. doi: 10.1016/0143-4160(90)90008-i. [DOI] [PubMed] [Google Scholar]
  22. Kanno T., Takishima T. Chloride and potassium channels in U937 human monocytes. J Membr Biol. 1990 Jun;116(2):149–161. doi: 10.1007/BF01868673. [DOI] [PubMed] [Google Scholar]
  23. Krouse M. E., Schneider G. T., Gage P. W. A large anion-selective channel has seven conductance levels. Nature. 1986 Jan 2;319(6048):58–60. doi: 10.1038/319058a0. [DOI] [PubMed] [Google Scholar]
  24. Langton P. D., Burke E. P., Sanders K. M. Participation of Ca currents in colonic electrical activity. Am J Physiol. 1989 Sep;257(3 Pt 1):C451–C460. doi: 10.1152/ajpcell.1989.257.3.C451. [DOI] [PubMed] [Google Scholar]
  25. Li M., McCann J. D., Anderson M. P., Clancy J. P., Liedtke C. M., Nairn A. C., Greengard P., Welsch M. J. Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia. Science. 1989 Jun 16;244(4910):1353–1356. doi: 10.1126/science.2472006. [DOI] [PubMed] [Google Scholar]
  26. Light D. B., Schwiebert E. M., Fejes-Toth G., Naray-Fejes-Toth A., Karlson K. H., McCann F. V., Stanton B. A. Chloride channels in the apical membrane of cortical collecting duct cells. Am J Physiol. 1990 Feb;258(2 Pt 2):F273–F280. doi: 10.1152/ajprenal.1990.258.2.F273. [DOI] [PubMed] [Google Scholar]
  27. Matthews G., Neher E., Penner R. Chloride conductance activated by external agonists and internal messengers in rat peritoneal mast cells. J Physiol. 1989 Nov;418:131–144. doi: 10.1113/jphysiol.1989.sp017831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mayer E. A., Koelbel C. B., Snape W. J., Jr, Eysselein V., Ennes H., Kodner A. Substance P and CGRP mediate motor response of rabbit colon to capsaicin. Am J Physiol. 1990 Nov;259(5 Pt 1):G889–G897. doi: 10.1152/ajpgi.1990.259.5.G889. [DOI] [PubMed] [Google Scholar]
  29. Mayer E. A., Loo D. D., Kodner A., Reddy S. N. Differential modulation of Ca2(+)-activated K+ channels by substance P. Am J Physiol. 1989 Dec;257(6 Pt 1):G887–G897. doi: 10.1152/ajpgi.1989.257.6.G887. [DOI] [PubMed] [Google Scholar]
  30. Mayer E. A., Loo D. D., Snape W. J., Jr, Sachs G. The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P. J Physiol. 1990 Jan;420:47–71. doi: 10.1113/jphysiol.1990.sp017901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mayer E. A., van Deventer G., Elashoff J., Khawaja S., Walsh J. H. Characterization of substance P effects on canine antral muscle. Am J Physiol. 1986 Jul;251(1 Pt 1):G140–G146. doi: 10.1152/ajpgi.1986.251.1.G140. [DOI] [PubMed] [Google Scholar]
  32. McCann F. V., McCarthy D. C., Noelle R. J. Patch-clamp profile of ion channels in resting murine B lymphocytes. J Membr Biol. 1990 Mar;114(2):175–188. doi: 10.1007/BF01869098. [DOI] [PubMed] [Google Scholar]
  33. Nelson D. J., Tang J. M., Palmer L. G. Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells. J Membr Biol. 1984;80(1):81–89. doi: 10.1007/BF01868692. [DOI] [PubMed] [Google Scholar]
  34. Nomura Y., Kaneko S., Kato K., Yamagishi S., Sugiyama H. Inositol phosphate formation and chloride current responses induced by acetylcholine and serotonin through GTP-binding proteins in Xenopus oocyte after injection of rat brain messenger RNA. Brain Res. 1987 Jul;388(2):113–123. doi: 10.1016/s0006-8993(87)80004-5. [DOI] [PubMed] [Google Scholar]
  35. Schlichter L. C., Grygorczyk R., Pahapill P. A., Grygorczyk C. A large, multiple-conductance chloride channel in normal human T lymphocytes. Pflugers Arch. 1990 Jun;416(4):413–421. doi: 10.1007/BF00370748. [DOI] [PubMed] [Google Scholar]
  36. Schumann M. A., Gardner P. Modulation of membrane K+ conductance in T-lymphocytes by substance P via a GTP-binding protein. J Membr Biol. 1989 Oct;111(2):133–139. doi: 10.1007/BF01871777. [DOI] [PubMed] [Google Scholar]
  37. Schwarze W., Kolb H. A. Voltage-dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membranes. Pflugers Arch. 1984 Nov;402(3):281–291. doi: 10.1007/BF00585511. [DOI] [PubMed] [Google Scholar]
  38. Schwiebert E. M., Light D. B., Fejes-Toth G., Naray-Fejes-Toth A., Stanton B. A. A GTP-binding protein activates chloride channels in a renal epithelium. J Biol Chem. 1990 May 15;265(14):7725–7728. [PubMed] [Google Scholar]
  39. Sims S. M., Walsh J. V., Jr, Singer J. J. Substance P and acetylcholine both suppress the same K+ current in dissociated smooth muscle cells. Am J Physiol. 1986 Oct;251(4 Pt 1):C580–C587. doi: 10.1152/ajpcell.1986.251.4.C580. [DOI] [PubMed] [Google Scholar]
  40. Soejima M., Kokubun S. Single anion-selective channel and its ion selectivity in the vascular smooth muscle cell. Pflugers Arch. 1988 Mar;411(3):304–311. doi: 10.1007/BF00585119. [DOI] [PubMed] [Google Scholar]
  41. Van Helden D. F. An alpha-adrenoceptor-mediated chloride conductance in mesenteric veins of the guinea-pig. J Physiol. 1988 Jul;401:489–501. doi: 10.1113/jphysiol.1988.sp017174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Woll K. H., Leibowitz M. D., Neumcke B., Hille B. A high-conductance anion channel in adult amphibian skeletal muscle. Pflugers Arch. 1987 Dec;410(6):632–640. doi: 10.1007/BF00581324. [DOI] [PubMed] [Google Scholar]
  43. Woll K. H., Neumcke B. Conductance properties and voltage dependence of an anion channel in amphibian skeletal muscle. Pflugers Arch. 1987 Dec;410(6):641–647. doi: 10.1007/BF00581325. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES