Abstract
1. Magnetic stimulation was applied over the motor cortex in forty-five normal human subjects and peristimulus time histograms (PSTHs) of the discharges of single motor units were used to record changes in the firing probability of individual spinal motoneurones of contralateral upper limb muscles. Recordings were obtained from 153 motor units from fourteen upper limb muscles. 2. For the majority of motor units the initial effect was a short latency facilitation. The estimated central conduction velocities and the rise times of the underlying excitatory postsynaptic potentials (EPSPs) were compatible with monosynaptic facilitation by a fast corticospinal pathway. In some motor units the initial effect was a short latency inhibition. Other units showed no statistically significant changes in firing probability. The proportion of the tested motor units in each of these categories depended on the muscle. All of the sampled units of first dorsal interosseous (1DI) showed short latency facilitation, as did the majority of units in the forearm and the biceps brachii. More than half of the sampled motor units of triceps brachii and deltoid showed either no effect or were inhibited. 3. To compare the net short latency actions of the neurones activated by magnetic stimulation on various motoneurone pools, the magnitude of the short latency facilitation or inhibition in a given motor unit was normalized to the magnitude of the short latency facilitation in the 1DI motor unit of the same subject at the same stimulus intensity, and these data were pooled for a number of subjects. 4. 1DI motoneurones received strong net facilitation (estimated mean EPSP amplitude 2.9 +/- 0.2 mV), the motoneurones of forearm muscles and biceps brachii received weaker net facilitation and triceps brachii and deltoid received no net effect. 5. It is concluded that the short latency corticospinal projections to upper limb motoneurones in humans have a distinct pattern which is similar to that in other primates.
Full text
PDF![397](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/faf949841664/jphysiol00434-0399.png)
![398](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/417f8074560e/jphysiol00434-0400.png)
![399](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/4717e19df4c5/jphysiol00434-0401.png)
![400](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/2bf915a56feb/jphysiol00434-0402.png)
![401](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/265e12c7fc50/jphysiol00434-0403.png)
![402](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/89470cd9fadd/jphysiol00434-0404.png)
![403](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/64b689b90d98/jphysiol00434-0405.png)
![404](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/2f81e13bd6fe/jphysiol00434-0406.png)
![405](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/21db6bfe41d2/jphysiol00434-0407.png)
![406](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/bd06c17bfa26/jphysiol00434-0408.png)
![407](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/9ef2b7016ac2/jphysiol00434-0409.png)
![408](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/65acfadb297f/jphysiol00434-0410.png)
![409](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/548db7fc2d8c/jphysiol00434-0411.png)
![410](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/1da75c3bce4f/jphysiol00434-0412.png)
![411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/e2dc9a949d35/jphysiol00434-0413.png)
![412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1260/1176206/4e2db8f443e4/jphysiol00434-0414.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asanuma H., Rosén I. Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp Brain Res. 1972;14(3):243–256. doi: 10.1007/BF00816161. [DOI] [PubMed] [Google Scholar]
- Ashby P., Zilm D. Relationship between EPSP shape and cross-correlation profile explored by computer simulation for studies on human motoneurons. Exp Brain Res. 1982;47(1):33–40. doi: 10.1007/BF00235883. [DOI] [PubMed] [Google Scholar]
- BERNHARD C. G., BOHM E. Cortical representation and functional significance of the corticomotoneuronal system. AMA Arch Neurol Psychiatry. 1954 Oct;72(4):473–502. doi: 10.1001/archneurpsyc.1954.02330040075006. [DOI] [PubMed] [Google Scholar]
- Benecke R., Meyer B. U., Göhmann M., Conrad B. Analysis of muscle responses elicited by transcranial stimulation of the cortico-spinal system in man. Electroencephalogr Clin Neurophysiol. 1988 May;69(5):412–422. doi: 10.1016/0013-4694(88)90063-6. [DOI] [PubMed] [Google Scholar]
- Boyd S. G., Rothwell J. C., Cowan J. M., Webb P. J., Morley T., Asselman P., Marsden C. D. A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry. 1986 Mar;49(3):251–257. doi: 10.1136/jnnp.49.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brouwer B., Ashby P. Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol. 1990 Dec;76(6):509–519. doi: 10.1016/0013-4694(90)90002-2. [DOI] [PubMed] [Google Scholar]
- Clough J. F., Kernell D., Phillips C. G. The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon's hand and forearm. J Physiol. 1968 Sep;198(1):145–166. doi: 10.1113/jphysiol.1968.sp008598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colebatch J. G., Gandevia S. C., Spira P. J. Voluntary muscle strength in hemiparesis: distribution of weakness at the elbow. J Neurol Neurosurg Psychiatry. 1986 Sep;49(9):1019–1024. doi: 10.1136/jnnp.49.9.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colebatch J. G., Rothwell J. C., Day B. L., Thompson P. D., Marsden C. D. Cortical outflow to proximal arm muscles in man. Brain. 1990 Dec;113(Pt 6):1843–1856. doi: 10.1093/brain/113.6.1843. [DOI] [PubMed] [Google Scholar]
- Cope T. C., Fetz E. E., Matsumura M. Cross-correlation assessment of synaptic strength of single Ia fibre connections with triceps surae motoneurones in cats. J Physiol. 1987 Sep;390:161–188. doi: 10.1113/jphysiol.1987.sp016692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowan J. M., Day B. L., Marsden C., Rothwell J. C. The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man. J Physiol. 1986 Aug;377:333–347. doi: 10.1113/jphysiol.1986.sp016190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day B. L., Dressler D., Maertens de Noordhout A., Marsden C. D., Nakashima K., Rothwell J. C., Thompson P. D. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol. 1989 May;412:449–473. doi: 10.1113/jphysiol.1989.sp017626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day B. L., Rothwell J. C., Thompson P. D., Dick J. P., Cowan J. M., Berardelli A., Marsden C. D. Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain. 1987 Oct;110(Pt 5):1191–1209. doi: 10.1093/brain/110.5.1191. [DOI] [PubMed] [Google Scholar]
- Edgley S. A., Eyre J. A., Lemon R. N., Miller S. Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol. 1990 Jun;425:301–320. doi: 10.1113/jphysiol.1990.sp018104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fetz E. E., Cheney P. D. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol. 1980 Oct;44(4):751–772. doi: 10.1152/jn.1980.44.4.751. [DOI] [PubMed] [Google Scholar]
- Fetz E. E., Gustafsson B. Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. J Physiol. 1983 Aug;341:387–410. doi: 10.1113/jphysiol.1983.sp014812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess C. W., Mills K. R., Murray N. M. Responses in small hand muscles from magnetic stimulation of the human brain. J Physiol. 1987 Jul;388:397–419. doi: 10.1113/jphysiol.1987.sp016621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasser R. J., Cheney P. D. Characteristics of corticomotoneuronal postspike facilitation and reciprocal suppression of EMG activity in the monkey. J Neurophysiol. 1985 Apr;53(4):959–978. doi: 10.1152/jn.1985.53.4.959. [DOI] [PubMed] [Google Scholar]
- Kwan H. C., MacKay W. A., Murphy J. T., Wong Y. C. Spatial organization of precentral cortex in awake primates. II. Motor outputs. J Neurophysiol. 1978 Sep;41(5):1120–1131. doi: 10.1152/jn.1978.41.5.1120. [DOI] [PubMed] [Google Scholar]
- LANDGREN S., PHILLIPS C. G., PORTER R. Minimal synaptic actions of pyramidal impulses on some alpha motoneurones of the baboon's hand and forearm. J Physiol. 1962 Apr;161:91–111. doi: 10.1113/jphysiol.1962.sp006875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemon R. N., Mantel G. W., Muir R. B. Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey. J Physiol. 1986 Dec;381:497–527. doi: 10.1113/jphysiol.1986.sp016341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy W. J., York D. H., McCaffrey M., Tanzer F. Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery. 1984 Sep;15(3):287–302. doi: 10.1227/00006123-198409000-00001. [DOI] [PubMed] [Google Scholar]
- Mao C. C., Ashby P., Wang M., McCrea D. Synaptic connections from large muscle afferents to the motoneurons of various leg muscles in man. Exp Brain Res. 1984;56(2):341–350. doi: 10.1007/BF00236290. [DOI] [PubMed] [Google Scholar]
- Merton P. A., Morton H. B. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980 May 22;285(5762):227–227. doi: 10.1038/285227a0. [DOI] [PubMed] [Google Scholar]
- Mills K. R., Murray N. M., Hess C. W. Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery. 1987 Jan;20(1):164–168. doi: 10.1097/00006123-198701000-00033. [DOI] [PubMed] [Google Scholar]
- PHILLIPS C. G., PORTER R. THE PYRAMIDAL PROJECTION TO MOTONEURONES OF SOME MUSCLE GROUPS OF THE BABOON'S FORELIMB. Prog Brain Res. 1964;12:222–245. doi: 10.1016/s0079-6123(08)60625-1. [DOI] [PubMed] [Google Scholar]
- Rossini P. M., Marciani M. G., Caramia M., Roma V., Zarola F. Nervous propagation along 'central' motor pathways in intact man: characteristics of motor responses to 'bifocal' and 'unifocal' spine and scalp non-invasive stimulation. Electroencephalogr Clin Neurophysiol. 1985 Oct;61(4):272–286. doi: 10.1016/0013-4694(85)91094-6. [DOI] [PubMed] [Google Scholar]
- Rothwell J. C., Thompson P. D., Day B. L., Dick J. P., Kachi T., Cowan J. M., Marsden C. D. Motor cortex stimulation in intact man. 1. General characteristics of EMG responses in different muscles. Brain. 1987 Oct;110(Pt 5):1173–1190. doi: 10.1093/brain/110.5.1173. [DOI] [PubMed] [Google Scholar]
- Zidar J., Trontelj J. V., Mihelin M. Percutaneous stimulation of human corticospinal tract: a single-fibre EMG study of individual motor unit responses. Brain Res. 1987 Sep 29;422(1):196–199. doi: 10.1016/0006-8993(87)90559-2. [DOI] [PubMed] [Google Scholar]