Abstract
1. The regulation of the splenic perfusion during normal and pathological conditions is incompletely understood. We studied the time course of splenic blood flow during the initial (0-24 h) development of haemorrhagic anaemia in awake and anaesthetized rats, as well as in awake rabbits and cats. Another group of rats had either normovolaemic anaemia or beginning polycythaemia. 2. The microsphere method was used to measure splenic blood flow. The awake rats were rendered anaemic either by a heavy (1.5% of body weight) or a moderate (0.7% of body weight) bleeding (hypovolaemia), by haemolysis (normovolaemia) or by bleeding (1.5% of body weight) followed by transfusion of autologous plasma (normovolaemia). Polycythaemia was induced with injections of erythropoietin. The anaesthetized rats as well as the awake rabbits and cats were also bled heavily (1.5% of body weight). 3. In awake rats, splenic blood flow increased to 215% of control within the first 5 min after bleeding. The perfusion declined nearly to baseline over the next 24 h. A similar, but less prominent splenic hyperaemia was detected in the awake rabbits and cats. However, this hyperaemic response was not detected in the normovolaemic, the polycythaemic or the anaesthetized and bled rats. 4. Administration of the adrenergic beta-blocking agent propranolol prior to bleeding significantly attenuated the splenic hyperaemia in the awake rats, while the alpha-blocking agent phentolamine or the cholinergic blocking agent atropine had no effect. 5. Concomitant with the initial increase in splenic perfusion, cardiac output increased to 123% of control in the awake, heavily bled rats. In the bled, anaesthetized rats cardiac output decreased to 91% of control 5 min after bleeding. A decrease in cardiac output to 64 and 70% of control was observed in the awake rabbits and cats, respectively. 6. Immediately following the bleeding, we noticed a substantial release of platelets from the rat spleen. 7. It appears that a heavy acute blood loss in awake rats, rabbits and cats elicits a marked reduction in splenic vascular tone, perhaps mediated by beta-adrenergic receptor activity. Anaesthesia abolished this response in rats. Possibly, the induced hypovolaemia triggered an accelerated release of platelets from the rat spleen, dependent on an augmented splenic blood flow.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aster R. H. Studies of the fate of platelets in rats and man. Blood. 1969 Aug;34(2):117–128. [PubMed] [Google Scholar]
- Chalmers J. P., Korner P. I., White S. W. The effects of haemorrhage in the unanaesthetized rabbit. J Physiol. 1967 Apr;189(3):367–391. doi: 10.1113/jphysiol.1967.sp008174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper M. J., Williamson R. C. Splenectomy: indications, hazards and alternatives. Br J Surg. 1984 Mar;71(3):173–180. doi: 10.1002/bjs.1800710302. [DOI] [PubMed] [Google Scholar]
- Crary B., Hauser S. L., Borysenko M., Kutz I., Hoban C., Ault K. A., Weiner H. L., Benson H. Epinephrine-induced changes in the distribution of lymphocyte subsets in peripheral blood of humans. J Immunol. 1983 Sep;131(3):1178–1181. [PubMed] [Google Scholar]
- Edwards A. J., Bacon T. H., Elms C. A., Verardi R., Felder M., Knight S. C. Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clin Exp Immunol. 1984 Nov;58(2):420–427. [PMC free article] [PubMed] [Google Scholar]
- Goto M., Murakami A., Akai K., Kawanishi G., Ueda M., Chiba H., Sasaki R. Characterization and use of monoclonal antibodies directed against human erythropoietin that recognize different antigenic determinants. Blood. 1989 Sep;74(4):1415–1423. [PubMed] [Google Scholar]
- Harker L. A. The role of the spleen in thrombokinetics. J Lab Clin Med. 1971 Feb;77(2):247–253. [PubMed] [Google Scholar]
- Horton J., Ogden M. E., Williams S., Coln D. The importance of splenic blood flow in clearing pneumococcal organisms. Ann Surg. 1982 Feb;195(2):172–176. doi: 10.1097/00000658-198202000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Intragumtornchai T., Huebers H. A., Eng M., Finch C. A. In vivo transferrin-iron receptor relationships in erythron of rats. Am J Physiol. 1988 Aug;255(2 Pt 2):R326–R331. doi: 10.1152/ajpregu.1988.255.2.R326. [DOI] [PubMed] [Google Scholar]
- Ishise S., Pegram B. L., Yamamoto J., Kitamura Y., Frohlich E. D. Reference sample microsphere method: cardiac output and blood flows in conscious rat. Am J Physiol. 1980 Oct;239(4):H443–H449. doi: 10.1152/ajpheart.1980.239.4.H443. [DOI] [PubMed] [Google Scholar]
- Iversen P. O., Standa M., Nicolaysen G. Marked regional heterogeneity in blood flow within a single skeletal muscle at rest and during exercise hyperaemia in the rabbit. Acta Physiol Scand. 1989 May;136(1):17–28. doi: 10.1111/j.1748-1716.1989.tb08625.x. [DOI] [PubMed] [Google Scholar]
- King R. B., Bassingthwaighte J. B., Hales J. R., Rowell L. B. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res. 1985 Aug;57(2):285–295. doi: 10.1161/01.res.57.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laughlin M. H., Armstrong R. B. Adrenoreceptor effects on rat muscle blood flow during treadmill exercise. J Appl Physiol (1985) 1987 Apr;62(4):1465–1472. doi: 10.1152/jappl.1987.62.4.1465. [DOI] [PubMed] [Google Scholar]
- Lewis S. M. The spleen--mysteries solved and unresolved. Clin Haematol. 1983 Jun;12(2):363–373. [PubMed] [Google Scholar]
- Lundberg C., Schoenberg M. H. Comparison of the Fick principle and the radioactive microsphere method in measuring cardiac output during haemorrhagic shock. Acta Physiol Scand. 1985 Mar;123(3):293–297. doi: 10.1111/j.1748-1716.1985.tb07590.x. [DOI] [PubMed] [Google Scholar]
- McCuskey R. S., Meineke H. A., Townsend S. F. Studies of the hemopoietic microenvironment. I. Changes in the microvascular system and stroma druing erythropoietic regeneration and suppression in the spleens of CF1 mice. Blood. 1972 May;39(5):697–712. [PubMed] [Google Scholar]
- Meckler R. L., Weaver L. C. Splenic, renal, and cardiac nerves have unequal dependence upon tonic supraspinal inputs. Brain Res. 1985 Jul 8;338(1):123–135. doi: 10.1016/0006-8993(85)90254-9. [DOI] [PubMed] [Google Scholar]
- Nicolaysen G., Shepard J., Onizuka M., Tanita T., Hattner R. S., Staub N. C. No gravity-independent gradient of blood flow distribution in dog lung. J Appl Physiol (1985) 1987 Aug;63(2):540–545. doi: 10.1152/jappl.1987.63.2.540. [DOI] [PubMed] [Google Scholar]
- Pendergast D. R., Krasney J. A., Ellis A., McDonald B., Marconi C., Cerretelli P. Cardiac output and muscle blood flow in exercising dogs. Respir Physiol. 1985 Sep;61(3):317–326. doi: 10.1016/0034-5687(85)90074-x. [DOI] [PubMed] [Google Scholar]
- Peters A. M., Lavender J. P. Factors controlling the intrasplenic transit of platelets. Eur J Clin Invest. 1982 Jun;12(3):191–195. doi: 10.1111/j.1365-2362.1982.tb00992.x. [DOI] [PubMed] [Google Scholar]
- Peterson D. F., Armstrong R. B., Laughlin M. H. Sympathetic neural influences on muscle blood flow in rats during submaximal exercise. J Appl Physiol (1985) 1988 Jul;65(1):434–440. doi: 10.1152/jappl.1988.65.1.434. [DOI] [PubMed] [Google Scholar]
- Risberg J., Hordnes C., Tyssebotn I. The effect of beta 1-adrenoceptor blockade on cardiac output and organ blood flow in conscious rats. Scand J Clin Lab Invest. 1987 Oct;47(6):521–527. doi: 10.1080/00365518709168463. [DOI] [PubMed] [Google Scholar]
- SAPIRSTEIN L. A., SAPIRSTEIN E. H., BREDEMEYER A. Effect of hemorrhage on the cardiac output and its distribution in the rat. Circ Res. 1960 Jan;8:135–148. doi: 10.1161/01.res.8.1.135. [DOI] [PubMed] [Google Scholar]
- Schadt J. C., Ludbrook J. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol. 1991 Feb;260(2 Pt 2):H305–H318. doi: 10.1152/ajpheart.1991.260.2.H305. [DOI] [PubMed] [Google Scholar]
- Seyde W. C., McGowan L., Lund N., Duling B., Longnecker D. E. Effects of anesthetics on regional hemodynamics in normovolemic and hemorrhaged rats. Am J Physiol. 1985 Jul;249(1 Pt 2):H164–H173. doi: 10.1152/ajpheart.1985.249.1.H164. [DOI] [PubMed] [Google Scholar]
- Shirley D. G., MacRae K. D., Walker J. The renal vascular response to mild and severe haemorrhage in the anaesthetized rat. J Physiol. 1991 Feb;433:373–382. doi: 10.1113/jphysiol.1991.sp018431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanek K. A., Smith T. L., Murphy W. R., Coleman T. G. Hemodynamic disturbances in the rat as a function of the number of microspheres injected. Am J Physiol. 1983 Dec;245(6):H920–H923. doi: 10.1152/ajpheart.1983.245.6.H920. [DOI] [PubMed] [Google Scholar]
- Stojanović N., Jovcić G., Basara N., Pavlović-Kentera V. Granulopoiesis in anemic Belgrade laboratory (b/b) rats. Exp Hematol. 1990 Jun;18(5):379–383. [PubMed] [Google Scholar]
- Tramposch K. M., Kung H. F., Blau M. Radioiodine-labeled N,N-dimethyl-N'-(2-hydroxy-3-alkyl-5-iodobenzyl)-1,3-propanediamines for brain perfusion imaging. J Med Chem. 1983 Feb;26(2):121–125. doi: 10.1021/jm00356a001. [DOI] [PubMed] [Google Scholar]
- Tsuchiya M., Ferrone R. A., Walsh G. M., Frohlich E. D. Regional blood flows measured in conscious rats by combined Fick and microsphere methods. Am J Physiol. 1978 Sep;235(3):H357–H360. doi: 10.1152/ajpheart.1978.235.3.H357. [DOI] [PubMed] [Google Scholar]
- Tuma R. F., Irion G. L., Vasthare U. S., Heinel L. A. Age-related changes in regional blood flow in the rat. Am J Physiol. 1985 Sep;249(3 Pt 2):H485–H491. doi: 10.1152/ajpheart.1985.249.3.H485. [DOI] [PubMed] [Google Scholar]
- Vatner S. F., Braunwald E. Cardiovascular control mechanisms in the conscious state. N Engl J Med. 1975 Nov 6;293(19):970–976. doi: 10.1056/NEJM197511062931906. [DOI] [PubMed] [Google Scholar]
- Zimpfer M., Manders W. T., Barger A. C., Vatner S. F. Pentobarbital alters compensatory neural and humoral mechanisms in response to hemorrhage. Am J Physiol. 1982 Nov;243(5):H713–H721. doi: 10.1152/ajpheart.1982.243.5.H713. [DOI] [PubMed] [Google Scholar]
