Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1992 Mar;448:525–537. doi: 10.1113/jphysiol.1992.sp019055

Barium- or quinine-induced depolarization activates K+, Na+ and cationic conductances in frog proximal tubular cells.

F Discala 1, F Belachgar 1, G Planelles 1, P Hulin 1, T Anagnostopoulos 1
PMCID: PMC1176213  PMID: 1317443

Abstract

1. Frog proximal tubular cells were fused into giant cells. We measured membrane potential (Vm), its changes (delta Vm), and current-induced voltage changes (delta psi) in single cells, during control and experimental states. Each cell served as its own control. 2. In the presence of a physiological Ringer solution, the transference number for potassium (tK) was 0.50. Barium (3 mM) reduced membrane conductance (Gm) by 50%; low-Cl- solutions and low-Na+ solutions also diminished Gm, by 52 and 30%, respectively. The association of barium and low-NaCl solutions decreased Gm to approximately 38% of control, indicating that the impermeant substitute of a physiological ion may interact with other pathways; alternatively, blockade of steady-state conductances may activate physiologically silent processes. 3. In an attempt to enhance the contribution of the partial K+ conductance (GK) to Gm, fused cells were exposed to low-Cl- solutions, containing in addition 0.1 mM-methazolamide, to inhibit the rheogenic Na(+)-HCO3-symport, and 1 microM-amiloride, to block Na+ conductance (GNa). tK went up to 0.83. 4. The high tK preparation was challenged with barium (3 mM) or quinine (Quin, 1 mM). These blockers produced large depolarizations (approximately 60 mV), however, although Gm decreased along early- and mid-depolarization, Gm plateaued and eventually it increased with larger and larger depolarization. 5. Depolarization-associated increase in Gm reflects activation of other conductances. These are Na+, cationic, and K+ conductance(s) poorly sensitive to quinine or barium. In the presence of Ba(2+)- or Quin-induced depolarization, injection of depolarizing current produces delayed increase in conductance. 6. Depolarization-induced activation of cationic conductance (Gcat) and GNa results in enlargement of the K+ electrochemical potential difference, to about 70 mV; this difference allows recycling of K+ ions outwards, since a GK is still detected and may contribute up to 38% of the total conductance.

Full text

PDF
525

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos T. Biionic potentials in the proximal tubule of Necturus kidney. J Physiol. 1973 Sep;233(2):375–394. doi: 10.1113/jphysiol.1973.sp010313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anagnostopoulos T., Planelles G. Organic anion permeation at the proximal tubule of necturus: an electrophysiological study of the peritubular membrane. Pflugers Arch. 1979 Sep;381(3):231–239. doi: 10.1007/BF00583254. [DOI] [PubMed] [Google Scholar]
  3. Anagnostopoulos T., Teulon J., Edelman A. Conductive properties of the proximal tubule in Necturus kidney. J Gen Physiol. 1980 May;75(5):553–587. doi: 10.1085/jgp.75.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport. J Gen Physiol. 1983 Jan;81(1):53–94. doi: 10.1085/jgp.81.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange. J Gen Physiol. 1983 Jan;81(1):29–52. doi: 10.1085/jgp.81.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bouachour G., Planelles G., Anagnostopoulos T. Fusion of amphibian proximal convoluted cells into giant cells. Pflugers Arch. 1988 Feb;411(2):220–222. doi: 10.1007/BF00582319. [DOI] [PubMed] [Google Scholar]
  7. Cox T. C., Helman S. I. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase. J Gen Physiol. 1986 Mar;87(3):485–502. doi: 10.1085/jgp.87.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietl P., Wang W., Oberleithner H. Fused cells of frog proximal tubule: I. Basic membrane properties. J Membr Biol. 1987;100(1):43–51. doi: 10.1007/BF02209139. [DOI] [PubMed] [Google Scholar]
  9. Edelman A., Anagnostopoulos T. Further studies on ion permeation in proximal tubule of necturus kidney. Am J Physiol. 1978 Aug;235(2):F89–F95. doi: 10.1152/ajprenal.1978.235.2.F89. [DOI] [PubMed] [Google Scholar]
  10. Guggino W. B., Boulpaep E. L., Giebisch G. Electrical properties of chloride transport across the necturus proximal tubule. J Membr Biol. 1982;65(3):185–196. doi: 10.1007/BF01869962. [DOI] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamilton K. L., Eaton D. C. Single-channel recordings from amiloride-sensitive epithelial sodium channel. Am J Physiol. 1985 Sep;249(3 Pt 1):C200–C207. doi: 10.1152/ajpcell.1985.249.3.C200. [DOI] [PubMed] [Google Scholar]
  13. Kawahara K. Ba2+-sensitive potassium permeability of the apical membrane in newt kidney proximal tubule. J Membr Biol. 1985;88(3):283–292. doi: 10.1007/BF01871092. [DOI] [PubMed] [Google Scholar]
  14. Kone B. C., Brady H. R., Gullans S. R. Coordinated regulation of intracellular K+ in the proximal tubule: Ba2+ blockade down-regulates the Na+,K+-ATPase and up-regulates two K+ permeability pathways. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6431–6435. doi: 10.1073/pnas.86.16.6431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuwahara M., Rector F. C., Jr, Berry C. A. SITS-sensitive basolateral anion current in rabbit proximal convoluted tubules. Am J Physiol. 1988 Jun;254(6 Pt 2):F828–F836. doi: 10.1152/ajprenal.1988.254.6.F828. [DOI] [PubMed] [Google Scholar]
  16. Lapointe J. Y., Laprade R., Cardinal J. Characterization of the apical membrane ionic permeability of the rabbit proximal convoluted tubule. Am J Physiol. 1986 Feb;250(2 Pt 2):F339–F347. doi: 10.1152/ajprenal.1986.250.2.F339. [DOI] [PubMed] [Google Scholar]
  17. Oberleithner H., Schmidt B., Dietl P. Fusion of renal epithelial cells: a model for studying cellular mechanisms of ion transport. Proc Natl Acad Sci U S A. 1986 May;83(10):3547–3551. doi: 10.1073/pnas.83.10.3547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Palmer L. G., Corthesy-Theulaz I., Gaeggeler H. P., Kraehenbuhl J. P., Rossier B. Expression of epithelial Na channels in Xenopus oocytes. J Gen Physiol. 1990 Jul;96(1):23–46. doi: 10.1085/jgp.96.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Planelles G., Teulon J., Anagnostopoulos T. The effects of barium on the electrical properties of the basolateral membrane in proximal tubule. Naunyn Schmiedebergs Arch Pharmacol. 1981 Dec;318(2):135–141. doi: 10.1007/BF00508838. [DOI] [PubMed] [Google Scholar]
  20. Reuss L., Finn A. L. Effects of luminal hyperosmolality on electrical pathways of Necturas gallbladder. Am J Physiol. 1977 Mar;232(3):C99–108. doi: 10.1152/ajpcell.1977.232.3.C99. [DOI] [PubMed] [Google Scholar]
  21. Schwegler J. S., Steigner W., Heuner A., Silbernagl S. pHi-dependent membrane conductance of proximal tubule cells in culture (OK): differential effects on K(+)- and Na(+)-conductive channels. J Membr Biol. 1990 Sep;117(3):243–251. doi: 10.1007/BF01868454. [DOI] [PubMed] [Google Scholar]
  22. Takumi T., Ohkubo H., Nakanishi S. Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science. 1988 Nov 18;242(4881):1042–1045. doi: 10.1126/science.3194754. [DOI] [PubMed] [Google Scholar]
  23. Ubl J., Murer H., Kolb H. A. Hypotonic shock evokes opening of Ca2+-activated K channels in opossum kidney cells. Pflugers Arch. 1988 Oct;412(5):551–553. doi: 10.1007/BF00582547. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES