Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Jan;121(1):145–150. doi: 10.1042/bj1210145

The dissociation of Yoshida hepatoma ribosomes into active particles

Enrico Gravela 1
PMCID: PMC1176497  PMID: 4330051

Abstract

1. The sedimentation pattern of Yoshida hepatoma ribosomes shows mainly a high dimer peak and an intermediate peak between those of monomer and dimer. 2. The treatment of the postmitochondrial supernatant with EDTA or potassium chloride leads to the dissociation of ribosomes into subunits, through a decrease ofthe ribosomal Mg2+/phosphorus ratio. Provided that the deprivation of endogenous Mg2+ is not complete, the subunits reassociate into active polyribosomes after addition of magnesium chloride to the medium. If the Mg2+/phosphorus ratio is lowered below 0.01 (μmol/μmol), structural changes occur, that become evident by a loss of protein and by a decreased sedimentation rate, which render the subribosomal particles unable to reassociate. 3. In the re-formation of polyribosomes from subunits, during the progressive increase of the concentration of magnesium chloride in the medium, the formation of monomeric ribosomes seems to be intermediate. 4. A dimerization of monomers and subunits occurs at concentrations of magnesium chloride greater than those required for the re-formation of polyribosomes and a preincubation for 1h at 0°C is necessary for the maximum dimerization, whereas the complete reconstitution of polyribosomes is immediate.

Full text

PDF
145

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berenblum I., Chain E. An improved method for the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):295–298. doi: 10.1042/bj0320295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonanou S., Cox R. A., Higginson B., Kanagalingam K. The production of biologically active subparticles from rabbit reticulocyte ribosomes. Biochem J. 1968 Nov;110(1):87–98. doi: 10.1042/bj1100087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen B. B. A factor converting monoribosomes into polyribosomes during protein synthesis in vitro. Biochem J. 1968 Nov;110(2):231–236. doi: 10.1042/bj1100231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldberg A. Magnesium binding by Escherichia coli ribosomes. J Mol Biol. 1966 Feb;15(2):663–673. doi: 10.1016/s0022-2836(66)80134-1. [DOI] [PubMed] [Google Scholar]
  5. Gravela E., Dianzani M. U. Studies on the mechanism of CCl(4)-induced polyribosomal damage. FEBS Lett. 1970 Jul 29;9(2):93–96. doi: 10.1016/0014-5793(70)80321-0. [DOI] [PubMed] [Google Scholar]
  6. Henderson A. R. A constant-volume device for preparing isokinetic sucrose density gradients. Anal Biochem. 1969 Feb;27(2):315–318. doi: 10.1016/0003-2697(69)90039-6. [DOI] [PubMed] [Google Scholar]
  7. Hogan B. L., Korner A. The role of ribosomal subunits and 80-S monomers in polysome formation in an ascites tumour cell. Biochim Biophys Acta. 1968 Nov 20;169(1):139–149. doi: 10.1016/0005-2787(68)90015-4. [DOI] [PubMed] [Google Scholar]
  8. Martin T. E., Rolleston F. S., Low R. B., Wool I. G. Dissociation and reassociation of skeletal muscle ribosomes. J Mol Biol. 1969 Jul 14;43(1):135–149. doi: 10.1016/0022-2836(69)90084-9. [DOI] [PubMed] [Google Scholar]
  9. Nolan R. D., Arnstein H. R. The dissociation of rabbit reticulocyte ribosomes into subparticles active in protein synthesis. Eur J Biochem. 1969 Aug;10(1):96–101. doi: 10.1111/j.1432-1033.1969.tb00660.x. [DOI] [PubMed] [Google Scholar]
  10. Nomura M., Lowry C. V. PHAGE f2 RNA-DIRECTED BINDING OF FORMYLMETHIONYL-TRNA TO RIBOSOMES AND THE ROLE OF 30S RIBOSOMAL SUBUNITS IN INITIATION OF PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1967 Sep;58(3):946–953. doi: 10.1073/pnas.58.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ORANGE M., RHEIN H. C. Microestimation of magnesium in body fluids. J Biol Chem. 1951 Mar;189(1):379–386. [PubMed] [Google Scholar]
  12. Pronczul A. W., Baliga B. S., Triant J. W., Munro H. N. Comparaison of the effect of amino acid supply on hepatic polysome profiles in vivo and in vitro. Biochim Biophys Acta. 1968 Mar 18;157(1):204–206. doi: 10.1016/0005-2787(68)90281-5. [DOI] [PubMed] [Google Scholar]
  13. Robinson G. B. The contamination of rat-liver polyribosomal preparations by non-ribosomal proteins. FEBS Lett. 1969 Aug;4(3):190–192. doi: 10.1016/0014-5793(69)80231-0. [DOI] [PubMed] [Google Scholar]
  14. Stahl J., Lawford G. R., Williams B., Campbell P. N. A requirement for the presence of cell sap in the reversible dissociation of rat liver polysomes to ribosomal sub-units. Biochem J. 1968 Aug;109(1):155–157. doi: 10.1042/bj1090155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vaughan M. H., Warner J. R., Darnell J. E. Ribosomal precursor particles in the HeLa cell nucleus. J Mol Biol. 1967 Apr 28;25(2):235–251. doi: 10.1016/0022-2836(67)90140-4. [DOI] [PubMed] [Google Scholar]
  16. Webb T. E., Morris H. P. Properties of the inactive ribosomal components in rat liver and hepatoma. Biochem J. 1969 Nov;115(3):575–582. doi: 10.1042/bj1150575. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES