Abstract
1. Ribosomes prepared from bovine lactating mammary gland are able to synthesize protein, whereas similar preparations from non-lactating glands are not. Washing the ribosome suspensions through a medium containing 0.5m-ammonium chloride enhanced their ability to incorporate phenylalanine into polyphenylalanine. 2. Ribosomes isolated from non-lactating bovine mammary gland, in contrast with those from rat liver and lactating mammary gland, contained significant amounts of extraneous nucleases. These enzymes could be removed by washing with a medium A buffer containing 0.5m-ammonium chloride. 3. Only those ribosomes from functionally active tissues were able to bind polyuridylic acid and phenylalanyl-tRNA.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baird G. D., Herriman I. D. Amino acid incorporation into ribonucleoprotein particles prepared from rabbit mammary glands during pregnancy and lactation. Biochim Biophys Acta. 1968 Aug 23;166(1):162–174. doi: 10.1016/0005-2787(68)90500-5. [DOI] [PubMed] [Google Scholar]
- Barondes S. H., Nirenberg M. W. Fate of a Synthetic Polynucleotide Directing Cell-Free Protein Synthesis II. Association with Ribosomes. Science. 1962 Nov 16;138(3542):813–817. doi: 10.1126/science.138.3542.813. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S., Marcker K. A. Polypeptidyl-sigma-ribonucleic acid and amino-acyl-sigma-ribonucleic acid binding sites on ribosomes. Nature. 1966 Jul 23;211(5047):380–384. doi: 10.1038/211380a0. [DOI] [PubMed] [Google Scholar]
- Brew K., Campbell P. N. Studies on the biosynthesis of protein by lactating guinea-pig mammary gland. Characteristics of the synthesis of alpha-lactalbumin and total protein by slices and cell-free systems. Biochem J. 1967 Jan;102(1):265–274. doi: 10.1042/bj1020265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRASER M. J., GUTFREUND H. Steps in amino-acid incorporation into mammary tissue. Proc R Soc Lond B Biol Sci. 1958 Dec 17;149(936):392–400. doi: 10.1098/rspb.1958.0078. [DOI] [PubMed] [Google Scholar]
- Fridlender B. R., Wettstein F. O. Differences in the ribosomal protein of free and membrane bound polysomes of chick embryo cells. Biochem Biophys Res Commun. 1970 Apr 24;39(2):247–253. doi: 10.1016/0006-291x(70)90785-0. [DOI] [PubMed] [Google Scholar]
- GILBERT W. Polypeptide synthesis in Escherichia coli. I. Ribosomes and the active complex. J Mol Biol. 1963 May;6:374–388. doi: 10.1016/s0022-2836(63)80050-9. [DOI] [PubMed] [Google Scholar]
- Ghosh H. P., Khorana H. G. Studies on polynucleotides, LXXXIV. On the role of ribosomal subunits in protein synthesis. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2455–2461. doi: 10.1073/pnas.58.6.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HENSHAW E. C., BOJARSKI T. B., HIATT H. H. PROTEIN SYNTHESIS BY FREE AND BOUND RAT LIVER RIBOSOMES IN VIVO AND IN VITRO. J Mol Biol. 1963 Aug;7:122–129. doi: 10.1016/s0022-2836(63)80041-8. [DOI] [PubMed] [Google Scholar]
- HOAGLAND M. B., STEPHENSON M. L., SCOTT J. F., HECHT L. I., ZAMECNIK P. C. A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem. 1958 Mar;231(1):241–257. [PubMed] [Google Scholar]
- Hawtrey A. O., Schirren V., Dijkstra J. Studies on azo-dye carcinogenesis in rat liver. The effect of 4-dimethylamino-3'-methylazobenzene on the incorporation of [C]leucine into rat-liver microsomal protein. Biochem J. 1963 Jul;88(1):106–114. doi: 10.1042/bj0880106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawtrey A. O. The effect of diisopropylfluorophosphate on [14C]-leucine incorporation by rat-liver ribosomes. S Afr J Med Sci. 1965 Dec;30(4):100–104. [PubMed] [Google Scholar]
- Herrington M. D., Hawtrey A. O. Competing addition and hydrolysis of the cytidylylcytidylyladenosine terminal residues of transfer ribonucleic acid isolated from the non-lactating bovine mammary gland. Biochem J. 1970 Sep;119(2):323–329. doi: 10.1042/bj1190323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrington M. D., Hawtrey A. O. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid. Biochem J. 1970 Feb;116(3):405–414. doi: 10.1042/bj1160405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrington M. D., Hawtrey A. O. Inhibitory effects of pH5 enzyme from non-lactating bovine mammary gland on various stages of protein synthesis in the rat liver amino acid-incorporating system. Biochem J. 1969 Dec;115(4):671–678. doi: 10.1042/bj1150671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrington M. D., Hawtrey A. O. Studies on subcellular fractions of non-lactating bovine mamm- ary gland. S Afr J Med Sci. 1969 Jul;34(2):49–58. [PubMed] [Google Scholar]
- Jonák J., Rychlík I. Role of messenger RNA in binding of peptidyl transfer RNA to 30-S and 50-S ribosomal subunits. Biochim Biophys Acta. 1970 Feb 18;199(2):421–434. doi: 10.1016/0005-2787(70)90084-5. [DOI] [PubMed] [Google Scholar]
- Kaji H., Suzuka I., Kaji A. Binding of specific sRNA to template ribosome complex: effect of proteolytic enzymes. J Mol Biol. 1966 Jul;18(2):219–234. doi: 10.1016/s0022-2836(66)80242-5. [DOI] [PubMed] [Google Scholar]
- Kaji H., Suzuka I., Kaji A. Binding of specific soluble ribonucleic acid to ribosomes. Binding of soluble ribonucleic acid to the template-30 S subunits complex. J Biol Chem. 1966 Mar 25;241(6):1251–1256. [PubMed] [Google Scholar]
- Maggio R., Vittorelli M. L., Rinaldi A. M., Monroy A. In vitro incorporation of amino acids into proteins stimulated by RNA from unfertilized sea urchin eggs. Biochem Biophys Res Commun. 1964 Apr 22;15(5):436–441. doi: 10.1016/0006-291x(64)90481-4. [DOI] [PubMed] [Google Scholar]
- Monroy A., Maggio R., Rinaldi A. M. Experimentally induced activation of the ribosomes of the unfertilized sea urchin egg. Proc Natl Acad Sci U S A. 1965 Jul;54(1):107–111. doi: 10.1073/pnas.54.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pestka S., Nirenberg M. Codeword recognition on 30 S ribosomes. Cold Spring Harb Symp Quant Biol. 1966;31:641–656. doi: 10.1101/sqb.1966.031.01.083. [DOI] [PubMed] [Google Scholar]
- Stavy L., Gross P. R. The protein-synthetic lesion in unfertilized eggs. Proc Natl Acad Sci U S A. 1967 Mar;57(3):735–742. doi: 10.1073/pnas.57.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traut R. R., Moore P. B., Delius H., Noller H., Tissières A. Ribosomal proteins of Escherichia coli. I. Demonstration of different primary structures. Proc Natl Acad Sci U S A. 1967 May;57(5):1294–1301. doi: 10.1073/pnas.57.5.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turkington R. W. Hormonal regulation of transfer ribonucleic acid and transfer ribonucleic acid-methylating enzymes during development of the mouse mammary gland. J Biol Chem. 1969 Oct 10;244(19):5140–5148. [PubMed] [Google Scholar]
- Zak R., Nair K. G., Rabinowitz M. Effect of trypsin on Escherichia coli and rabbit reticulocyte ribosomes. Nature. 1966 Apr 9;210(5032):169–172. doi: 10.1038/210169a0. [DOI] [PubMed] [Google Scholar]
