Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Feb;121(4):613–620. doi: 10.1042/bj1210613

Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum polynucleotide phosphorylase

Pearl I Peterkin 1, P S Fitt 1
PMCID: PMC1176637  PMID: 5114973

Abstract

1. Polynucleotide phosphorylase was purified 200-fold from Halobacterium cutirubrum. 2. It is membrane-associated and can be solubilized by sonication. 3. The purified enzyme requires a high ionic strength for both stability and activity. 4. It is Mn2+-dependent, has all three typical polynucleotide phosphorylase activities and is specific for nucleoside diphosphates. 5. The enzyme is of low molecular weight.

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAMS A., McNAMARA P. Polynucleotide phosphorylase in isolated bacterial cell membranes. J Biol Chem. 1962 Jan;237:170–175. [PubMed] [Google Scholar]
  2. BAXTER R. M. An interpretation of the effects of salts on the lactic dehydrogenase of Halobacterium salinarium. Can J Microbiol. 1959 Feb;5(1):47–57. doi: 10.1139/m59-006. [DOI] [PubMed] [Google Scholar]
  3. BAXTER R. M., GIBBONS N. E. Effects of sodium and potassium chloride on certain enzymes of Micrococcus halodenitrificans and Pseudomonas salinaria. Can J Microbiol. 1956 Oct;2(6):599–606. doi: 10.1139/m56-072. [DOI] [PubMed] [Google Scholar]
  4. BAXTER R. M., GIBBONS N. E. The cysteine desulphydrase of Pseudomonas salinaria. Can J Microbiol. 1957 Apr;3(3):461–465. doi: 10.1139/m57-049. [DOI] [PubMed] [Google Scholar]
  5. BAXTER R. M., GIBBONS N. E. The glycerol dehydrogenases of Pseudomonas salinaria, Vibrio costicolus, and Escherichia coli in relation to bacterial halophilism. Can J Biochem Physiol. 1954 May;32(3):206–217. [PubMed] [Google Scholar]
  6. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  7. Brown A. D., Shorey C. D., Turner H. P. An alternative method of isolating the membrane of a halophilic bacterium. J Gen Microbiol. 1965 Nov;41(2):225–231. doi: 10.1099/00221287-41-2-225. [DOI] [PubMed] [Google Scholar]
  8. CHRISTIAN J. H., WALTHO J. A. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta. 1962 Dec 17;65:506–508. doi: 10.1016/0006-3002(62)90453-5. [DOI] [PubMed] [Google Scholar]
  9. EGAMI F. Recherches biochimiques sur les bactéries halotolérantes et halophiles. Bull Soc Chim Biol (Paris) 1955;37(2-3):207–217. [PubMed] [Google Scholar]
  10. Fitt P. S., Fitt E. A. The effect of trypsin digestion on the activities of polynucleotide phosphorylase. Biochem J. 1967 Oct;105(1):25–33. doi: 10.1042/bj1050025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fitt P. S., See Y. P. Guinea-pig liver polynucleotide phosphorylase. Biochem J. 1970 Jan;116(2):309–311. doi: 10.1042/bj1160309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GRUNBERG-MANAGO M., ORTIZ P. J., OCHOA S. Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of azotobacter vinelandii. Biochim Biophys Acta. 1956 Apr;20(1):269–285. doi: 10.1016/0006-3002(56)90286-4. [DOI] [PubMed] [Google Scholar]
  13. Gajda A. T., Zaror de Behrens G., Fitt P. S. Preparatin, proteolysis and reversible oxidationof highly purified Azotobacter vinelandii polynucleotide phosphorylase. Biochem J. 1970 Dec;120(4):753–761. doi: 10.1042/bj1200753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffiths E., Bayley S. T. Properties of transfer ribonucleic acid and aminoacyl transfer ribonucleic acid synthetases from an extremely halophilic bacterium. Biochemistry. 1969 Feb;8(2):541–551. doi: 10.1021/bi00830a013. [DOI] [PubMed] [Google Scholar]
  15. HOLMES P. K., HALVORSON H. O. PROPERTIES OF A PURIFIED HALOPHILIC MALIC DEHYDROGENASE. J Bacteriol. 1965 Aug;90:316–326. doi: 10.1128/jb.90.2.316-326.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HOLMES P. K., HALVORSON H. O. PURIFICATION OF A SALT-REQUIRING ENZYME FROM AN OBLIGATELY HALOPHILIC BACTERIUM. J Bacteriol. 1965 Aug;90:312–315. doi: 10.1128/jb.90.2.312-315.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holmes P. K., Dundas I. E., Halvorson H. O. Halophilic enzymes in cell-free extracts of Halobacterium salinarium. J Bacteriol. 1965 Oct;90(4):1159–1160. doi: 10.1128/jb.90.4.1159-1160.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hsieh W. T., Buchanan J. M. Polymerization of nucleoside diphosphate with a manganese-dependent enzyme from Escherichia coli Q13. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2468–2475. doi: 10.1073/pnas.58.6.2468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kimhi Y., Littauer U. Z. The intracellular distribution of polynucleotide phosphorylase in Escherichia coli cells. Biochemistry. 1967 Jul;6(7):2066–2073. doi: 10.1021/bi00859a025. [DOI] [PubMed] [Google Scholar]
  20. Kushner D. J. Halophilic bacteria. Adv Appl Microbiol. 1968;10:73–99. doi: 10.1016/s0065-2164(08)70189-8. [DOI] [PubMed] [Google Scholar]
  21. LITTAUER U. Z., KORNBERG A. Reversible synthesis of polyribonucleotides with an enzyme from Escherichia coli. J Biol Chem. 1957 Jun;226(2):1077–1092. [PubMed] [Google Scholar]
  22. Lanyi J. K., Stevenson J. Effect of salts and organic solvents on the activity of Halobacterium cutirubrum catalase. J Bacteriol. 1969 May;98(2):611–616. doi: 10.1128/jb.98.2.611-616.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lanyi J. K. Studies of the electron transport chain of extremely halophilic bacteria. 3. Mechanism of the effect of salt on menadione reductase. J Biol Chem. 1969 Aug 10;244(15):4168–4173. [PubMed] [Google Scholar]
  24. Louis B. G., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1971 Feb;121(4):621–627. doi: 10.1042/bj1210621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Louis B. G., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum ribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1971 Feb;121(4):629–633. doi: 10.1042/bj1210629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Louis B. G., Peterkin P. I., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Gel-filtration and density-gradient-centrifugation studies of the molecular weights of Halobacterium cutirubrum polynucleotide phosphorylase and deoxyribonucleic acid- and ribonucleic acid-dependent ribonucleic acid polymerases. Biochem J. 1971 Feb;121(4):635–641. doi: 10.1042/bj1210635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Norberg P., von Hofsten B. Proteolytic enzymes from extremely halophilic bacteria. J Gen Microbiol. 1969 Feb;55(2):251–256. doi: 10.1099/00221287-55-2-251. [DOI] [PubMed] [Google Scholar]
  28. SEHGAL S. N., GIBBONS N. E. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol. 1960 Apr;6:165–169. doi: 10.1139/m60-018. [DOI] [PubMed] [Google Scholar]
  29. See Y. P., Fitt P. S. Partial purification and properties of guinea-pig liver polynucleotide phosphorylase. Biochem J. 1970 Sep;119(3):517–524. doi: 10.1042/bj1190517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thang D. C. Purification et caractérisation de la polynucléotide phosphorylase d'Azotobacter vinelandii. Bull Soc Chim Biol (Paris) 1967;49(12):1773–1783. [PubMed] [Google Scholar]
  31. Thang M. N., Dondon L., Grunberg-Manago M. A propos de la répartition universelle de la polynucléotide phosphorylase chez les bactéries. C R Acad Sci Hebd Seances Acad Sci D. 1969 Aug 11;269(6):747–750. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES