Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1971 Apr;122(2):135–138. doi: 10.1042/bj1220135

Incorporation of label from d-β-hydroxy-[14C]butyrate and [3-14C]acetoacetate into amino acids in rat brain in vivo

Jill E Cremer 1
PMCID: PMC1176756  PMID: 5117566

Abstract

The metabolism of ketone bodies by rat brain was studied in vivo. Rats starved for 48h were given either d-β-hydroxy[3-14C]butyrate or [3-14C]acetoacetate by intravenous injection and killed after 3 or 10min. Total radioactivity in the acid-soluble material of the brain and the specific radioactivities of the brain amino acids glutamate, glutamine, aspartate and γ-aminobutyrate were determined. A group of fed animals were also given d-β-hydroxy[3-14C]butyrate. In the brains of all animals 14C was present in the acid-soluble material and the specific radioactivity of glutamate was greater than that of glutamine.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates M. W., Krebs H. A., Williamson D. H. Turnover rates of ketone bodies in normal, starved and alloxan-diabetic rats. Biochem J. 1968 Dec;110(4):655–661. doi: 10.1042/bj1100655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berl S., Frigyesi T. L. Metabolism of [14C]leucine and [14C]acetate in sensorimotor cortex, thalamus, caudate nucleus and cerebellum of the cat. J Neurochem. 1968 Sep;15(9):965–970. doi: 10.1111/j.1471-4159.1968.tb11639.x. [DOI] [PubMed] [Google Scholar]
  3. CREMER J. E. AMINO ACID METABOLISM IN RAT BRAIN STUDIED WITH 14C-LABELLED GLUCOSE. J Neurochem. 1964 Mar;11:165–185. doi: 10.1111/j.1471-4159.1964.tb06127.x. [DOI] [PubMed] [Google Scholar]
  4. Cremer J. E. Selective inhibition of glucose oxidation by triethyltin in rat brain in vivo. Biochem J. 1970 Aug;119(1):95–102. doi: 10.1042/bj1190095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GAITONDE M. K., DAHL D. R., ELLIOTT K. A. ENTRY OF GLUCOSE CARBON INTO AMINO ACIDS OF RAT BRAIN AND LIVER IN VIVO AFTER INJECTION OF UNIFORMLY 14-C-LABELLED GLUCOSE. Biochem J. 1965 Feb;94:345–352. doi: 10.1042/bj0940345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hawkins R. A. Uptake of ketone bodies by rat brain in vivo. Biochem J. 1971 Jan;121(1):17P–17P. doi: 10.1042/bj1210017pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoberman H. D. The fate of the alphah atom of L-lactate in perfused rat liver. Ann N Y Acad Sci. 1965 Jul 31;119(3):1070–1083. doi: 10.1111/j.1749-6632.1965.tb47463.x. [DOI] [PubMed] [Google Scholar]
  8. Klee C. B., Sokoloff L. Changes in D(--)-beta-hydroxybutyric dehydrogenase activity during brain maturation in the rat. J Biol Chem. 1967 Sep 10;242(17):3880–3883. [PubMed] [Google Scholar]
  9. Minard F. N., Mushahwar I. K. The effect of periodic convulsions induced by 1,1-dimethylhydrazine on the synthesis of rat brain metabolites from [2-14C]glucose. J Neurochem. 1966 Jan;13(1):1–11. doi: 10.1111/j.1471-4159.1966.tb10279.x. [DOI] [PubMed] [Google Scholar]
  10. O'Neal R. M., Koeppe R. E. Precursors in vivo of glutamate, aspartate and their derivatives of rat brain. J Neurochem. 1966 Sep;13(9):835–847. doi: 10.1111/j.1471-4159.1966.tb05879.x. [DOI] [PubMed] [Google Scholar]
  11. O'neal R. M., Koeppe R. E., Williams E. I. Utilization in vivo of glucose and volatile fatty acids by sheep brain for the synthesis of acidic amino acids. Biochem J. 1966 Dec;101(3):591–597. doi: 10.1042/bj1010591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., Cahill G. F., Jr Brain metabolism during fasting. J Clin Invest. 1967 Oct;46(10):1589–1595. doi: 10.1172/JCI105650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Page M. A., Williamson D. H. Activity of ketone-body utilization pathway in brain of suckling and adult rats. Biochem J. 1971 Jan;121(1):16P–16P. doi: 10.1042/bj1210016pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Patel A. J., Balázs R. Manifestation of metabolic compartmentation during the maturation of the rat brain. J Neurochem. 1970 Jul;17(7):955–971. doi: 10.1111/j.1471-4159.1970.tb02249.x. [DOI] [PubMed] [Google Scholar]
  15. Thompson A. M., Robertson R. C., Bauer T. A. A rat head-perfusion technique developed for the study of brain uptake of materials. J Appl Physiol. 1968 Mar;24(3):407–411. doi: 10.1152/jappl.1968.24.3.407. [DOI] [PubMed] [Google Scholar]
  16. Van den Berg C. J. Compartmentation of glutamate metabolism in the developing brain: experiments with labelled glucose, acetate, phenylalanine, tyrosine and proline. J Neurochem. 1970 Jul;17(7):973–983. doi: 10.1111/j.1471-4159.1970.tb02250.x. [DOI] [PubMed] [Google Scholar]
  17. Van den Berg C. J., Krzalić L., Mela P., Waelsch H. Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem J. 1969 Jun;113(2):281–290. doi: 10.1042/bj1130281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES