Abstract
1. Chondroitin sulphate was isolated from bovine nasal septa by precipitation with cetylpyridinium chloride after digestion of the tissue with papain. 2. The material was divided into two portions, one of which was partially degraded with testicular hyaluronidase. 3. Untreated and hyaluronidase-digested material were fractionated into a total of eleven subfractions by gel chromatography on Sephadex G-200 and Sephadex G-100 respectively. 4. Chemical analyses indicated that the composition of all the fractions was similar to that of chondroitin sulphate. However, electrophoresis revealed a charge-inhomogeneity in the low-molecular-weight fractions obtained after hyaluronidase digestion. 5. The physicochemical properties of the subfractions were investigated by sedimentation-velocity, diffusion and sedimentation-equilibrium studies, osmometry, viscometry and gel chromatography. The individual fractions were essentially monodisperse and showed molecular weights ranging from 2400 to 36000. 6. The relationship between the intrinsic viscosity and the molecular weight was [η]=5.0×10−6×M1.14, indicating that the chondroitin sulphate molecules assume a shape intermediate between that of a random coil and a stiff rod. 7. The relationship between the sedimentation constant and the molecular weight (>104) was s020,w=2.3×10−2×M0.44.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON B., HOFFMAN P., MEYER K. THE O-SERINE LINKAGE IN PEPTIDES OF CHONDROITIN 4- OR 6-SULFATE. J Biol Chem. 1965 Jan;240:156–167. [PubMed] [Google Scholar]
- BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
- BUDDECKE E., KROEZ W., LANKA E. [Chemical composition and macromolecular structure of chondroitin sulfate proteins]. Hoppe Seylers Z Physiol Chem. 1963 Mar;331:196–218. doi: 10.1515/bchm2.1963.331.1.196. [DOI] [PubMed] [Google Scholar]
- Fransson L. A., Rodén L. Structure of dermatan sulfate. I. Degradation by testicular hyaluronidase. J Biol Chem. 1967 Sep 25;242(18):4161–4169. [PubMed] [Google Scholar]
- Greiling H., Stuhlsatz H. W., Plagemann L. Struktur und Stoffwechsel von Glykosaminoglykan-Proteinen, II. Die Chondroitin-4-sulfat-Peptide der Rinder-Cornea. Hoppe Seylers Z Physiol Chem. 1967 Feb;348(2):121–128. [PubMed] [Google Scholar]
- Hjertquist S. O., Vejlens L. The glycosaminoglycans of dog compact bone and epiphyseal cartilage in the normal state and in experimental hyperparathyroidism. Calcif Tissue Res. 1968 Dec 18;2(4):314–333. doi: 10.1007/BF02279220. [DOI] [PubMed] [Google Scholar]
- LINDAHL U., CIFONELLI J. A., LINDAHL B., RODEN L. THE ROLE OF SERINE IN THE LINKAGE OF HEPARIN TO PROTEIN. J Biol Chem. 1965 Jul;240:2817–2820. [PubMed] [Google Scholar]
- Laurent T. C., Granath K. A. Fractionation of dextran and Ficoll by chromatography on Sephadex G-200. Biochim Biophys Acta. 1967 Mar 22;136(2):191–198. doi: 10.1016/0304-4165(67)90063-3. [DOI] [PubMed] [Google Scholar]
- Luscombe M., Phelps C. F. Action of degradative enzymes on the light fraction of bovine septa protein polysaccharide. Biochem J. 1967 Apr;103(1):103–109. doi: 10.1042/bj1030103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATHEWS M. B. The molecular weight of sodium chondroitin sulfate by light scattering. Arch Biochem Biophys. 1956 Apr;61(2):367–377. doi: 10.1016/0003-9861(56)90359-9. [DOI] [PubMed] [Google Scholar]
- Marler E., Davidson E. A. Structure of a polysaccharide protein complex. Proc Natl Acad Sci U S A. 1965 Aug;54(2):648–656. doi: 10.1073/pnas.54.2.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARTRIDGE S. M., DAVIS H. F., ADAIR G. S. The chemistry of connective tissues. 6. The constitution of the chondroitin sulphate-protein complex in cartilage. Biochem J. 1961 Apr;79:15–26. doi: 10.1042/bj0790015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paglini S. Experimental aspects of the high-speed membrane osmometer. Anal Biochem. 1968 May;23(2):247–251. doi: 10.1016/0003-2697(68)90356-4. [DOI] [PubMed] [Google Scholar]
- Radhakrishnamurthy B., Dalferes E. R., Jr, Berenson G. S. Determination of hexosamines by gas-liquid chromatography. Anal Biochem. 1966 Dec;17(3):545–550. doi: 10.1016/0003-2697(66)90190-4. [DOI] [PubMed] [Google Scholar]
- SCOTT J. E. Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Methods Biochem Anal. 1960;8:145–197. doi: 10.1002/9780470110249.ch4. [DOI] [PubMed] [Google Scholar]
- STOFFYN P. J., JEANLOZ R. W. Identification of amino sugars by paper chromatography. Arch Biochem Biophys. 1954 Oct;52(2):373–379. doi: 10.1016/0003-9861(54)90137-x. [DOI] [PubMed] [Google Scholar]
- Wasteson A. A method for the determination of molecular weight dispersion in chondroitin sulphate on a microgram level. Biochim Biophys Acta. 1969 Feb 18;177(1):152–154. doi: 10.1016/0304-4165(69)90076-2. [DOI] [PubMed] [Google Scholar]
- Wessler E. Analytical and preparative separation of acidic glycosaminoglycans by electrophoresis in barium acetate. Anal Biochem. 1968 Dec;26(3):439–444. doi: 10.1016/0003-2697(68)90205-4. [DOI] [PubMed] [Google Scholar]
